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Abstract—Today, most available parallel environments support
multiple users executing their jobs in a common shared infras-
tructure. In such environments, when scheduling individually
important jobs from different users, the problem of fairness
arises. In this work, we propose a fair scheduling algorithm
that handles this problem by adopting processor fair-share
as a strategy for user fairness. The user’s workload follows
the Campaign Scheduling model, in which each workload is
characterized by the submission of successive sets (or campaigns)
of sequential and independent jobs. The algorithm guarantees
that the flow time of a campaign is proportional to campaign’s
size and the total number of users. In contrast to the classic
queuing systems, the flow time does not depend on the total
system load. Internally, the algorithm maintains a virtual time-
sharing schedule in which each user is assigned the same share
of processors. The order of completion in the virtual schedule
determines the execution order on the real processors. We analyse
the performance of the algorithm by simulation on a real parallel
machine workload trace.

Our approach shows that a parallel machine can give a similar
type of performance guarantee as a round-robin scheduler, no job
preemption been required. Consequently, processors are shared
in a proportionally-fair manner among users.

I. INTRODUCTION

High performance computing (HPC) systems, like clusters,
grids, supercomputers and desktop grids are usually shared by
multiple users who compete for the usage of the resources
in order to execute their jobs. Most of such systems embrace
users (or projects) around a common infrastructure that simpli-
fies resource management and application execution through
a centralized scheduler. For instance, the BOINC platform [1]
gathers over 580, 000 hosts that deliver over 2, 300 TeraFLOP
per day to several projects. In the past, most users were
throughput-oriented but popularization of those systems at-
tracted other types of users. Nowadays, response-time users are
increasingly common [2]. Workload of response-time users is
composed of multiple submissions released sequentially over
time [3]–[6]. For such users, the criterion of throughput is
not meaningful as they are more interested in the flow time
of each submission. How to take advantage of this multi-user
submission pattern and how to consider the flow-time objective
is a problem that has not been well addressed yet by the HPC
community.

In this work, we consider the problem of scheduling cam-
paigns of sequential jobs submitted by multiple users over
time in a system composed of identical parallel machines.
The campaign scheduling problem was introduced in [7]

and analyzed under restrictive assumptions. A user submits
campaigns sequentially; each campaign is a set of independent
jobs. However, there is a barrier at the end of each campaign.
Any job from a campaign cannot start until all the jobs
from the previous campaign of the user have been completed.
Campaigns generalize the Bag-of-Tasks application model:
in Bag-of-Tasks, the application is composed of small jobs,
whereas in campaign scheduling the user submits multiple
sets of jobs. The campaign scheduling problem models a
submission pattern: the user submits a set of jobs, analyses the
outcomes and resubmits another set of jobs. In other words,
the campaigns from one user must be scheduled one after the
other since the submission of a new campaign depends on the
outcome of the previous one. As this submission pattern is in
fact interactive (submit – analyze – submit – . . . ), the objective
of each user is to minimize the time each campaign spents in
the system (campaign’s flow time).

Classic approaches such as FCFS (First-Come-First-
Served), backfilling and priority queues are commonly used
by actual systems. But these systems are not well-adapted
for multi-user environments as they focus exclusively on job
characteristics to achieve single objective optimization such as
overall makespan, throughput or system utilization [8]–[11].
However, users are selfish: they care about the performance
of their jobs, rather than about the whole system. A typical
scheduler (such as Maui) would treat between-user fairness
as a secondary objective. For instance, users submitting many
tasks may be assigned “negative karma”, a penalty that reduces
the priority of a job.

In this work, we propose a scheduling algorithm that ex-
plicitly maintains between-user fairness by guaranteeing the
worst-case stretch of each campaign as a function of user’s
own workload and the number of active users. Fairness is a
somewhat fuzzy concept to model theoretically. In scheduling,
one of the accepted and used metrics is the stretch—the
time the job stays in the system (the flow time) normalized
by the job’s processing time. The stretch of a job measures
how the performance of the job is degraded compared to
a system dedicated to this job. Thus, stretch measures the
relative responsiveness of the system. Stretch optimization was
studied for independent tasks without preemption [12] and for
Bag-of-Tasks applications [13].

Using the stretch as a strategy for fairness, we propose
OStrich — an on-line scheduling algorithm that bounds the



maximum stretch of each campaign by a function of the total
workload of this campaign and the previous campaign, the
number of active users and the maximum job length (pmax).
Jobs are scheduled according to a priority list; priorities are
determined by campaign’s virtual execution time. We define
this virtual execution time as the time the campaign would
take to complete in a divisible load task model and using a
fair-share scheduling strategy that assigns an equal share of
processors to each user. We validate OStrich experimentally
by conducting simulations on a workload trace. Compared to
a standard scheduler (Maui with FCFS scheduling), OStrich
results in lower stretches and more consistent results for every
user.

The rest of this paper is organized as follows. In the
next section, we give an overview of the state-of-the-art of
scheduling with multiple users. In Section III we present a
formal model of Campaign Scheduling. This model is an
extension of what was defined in [7]. Section IV is dedicated
to the description of our solution, a new algorithm for the
problem of campaign scheduling with multiple users. The
theoretical results are depicted and analyzed in Section V.
Our solution is assessed through simulations that uses data
extracted from a workload execution log in a real cluster. This
is presented in Section VI. In Section VII, we show how our
solution can also be used for the general scheduling problem
with multiple users. Finally, we present our conclusions and
future work in Section VIII.

II. STATE-OF-ART

The main works related to our research address the problem
of scheduling jobs from multiple users who compete for the
resources and the use of fair policies to favoring jobs on
parallel systems.

Fairness is an important issue on the design of scheduling
policies and it has gained growing attention in the last decade.
But it is still a fuzzy concept that has been handled in
many different ways, varying according to the target problems.
In [8], the authors discuss the Maui scheduler, specifically
the FCFS-backfill, job prioritization and fairness mechanisms.
Historical fair-share usage information is provided, which
allows favoring jobs based on historical usage of resources
associated with their credentials. Despite the great flexibility
offered by the scheduler, which supports fine-tuning of several
parameters directly accounted in the fairness configuration,

these data are mainly job-attribute based dimensions while our
solution adopts a user centric approach.

In [10] and [9], metrics are proposed for expressing the
degree of unfairness in various systems. Both works evaluates
the unfairness of algorithms such as FCFS, backfilling and
processor sharing, but fairness is associated with the jobs and
their service requirements. Thus, the concept of fairness is
seen as “fairness between jobs” instead of “fairness between
users” as we propose.

The Multi-Users Scheduling Problem (MUSP) was first
studied on a single processor with two users by Agnetis et
al. [14] and on multiple processors by Saule and Trystram [15].

Agnetis et al. [14] provided a < 1, 1 >-approximation
for the problem of two users competing to perform their
respective jobs as soon as possible on a common processing
resource. They analyzed several scenarios depending on the
objective function adopted by each agent and on the structure
of the processing system. They are interested in Constrained
Optimization Problems where one objective is fixed as a
constraint while the second objective is optimized.

The authors show that when both users are interested in
the makespan, the problem can be solved in polynomial time.
If they are both interested in the sum of completion times,
the problem becomes binary NP-hard and they provide a
pseudo-polynomial dynamic program to solve it. With mixed
objectives, if one user is interested in the weighted sum of
completion times, the problem is binary NP-hard. Other cases
are polynomial.

Saule and Trystram [15] analyzed the Multi-Users Schedul-
ing Problem (MUSP), namely, the problem of scheduling
independent sequential jobs belonging to k different users on
m identical processors. In this problem, each user selects an
objective function among makespan and sum (weighted or
not) of completion times. This is an offline problem where
all the jobs are known in advance and can be immediately
executed. This problem becomes strongly NP-hard as soon
as one user aims at optimizing the makespan. For the case
where all users are interested in the makespan, denoted by
MUSP (k : Cmax), the authors showed that the problem
can not be approximated with a vector ratio better than
(1, 2, . . . , k). This notation is a natural extension of the classic
notation of approximation ratios where the u-th number of the
vector corresponds to the approximation ratio of the objective
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Fig. 1. Campaign Scheduling notations (two submissions from 1 user)



of the u-th user.
What is interesting regarding our work is that the problem

of MUSP with all the users interested in Cmax is equivalent
to an instance of Campaign Scheduling where all users submit
only one campaign at the same time, in the beginning of
the schedule (i.e. ready jobs). Obviously, the performance
guarantees obtained from MUSP (k : Cmax) can be applied
in the same way for this particular instance of Campaign
Scheduling.

The Campaign Scheduling model was introduced in our
earlier work [7] where we considered a partially on-line
model with continuous streams of campaigns: for each user,
immediately after a campaign was completed, the next one
was supposed to be ready. This paper considers an on-line
version of this problem. Additionally, we allow a “think-time”
between successive campaigns, thus the number of active
users (those who have jobs to compute) varies dynamically
during the system’s life-time. This work is related to the
DEQ algorithm [16] which considers virtual schedule and
preemptive jobs. However our main contribution lies in the
introduction of a real schedule. It enables us to be more
efficient than DEQ (e.g. in DEQ, if there are 2 users, it is
Pareto-efficient to finish all jobs of the first user before starting
the second one, instead of executing them in parallel).

III. MODEL AND PROBLEM DEFINITION

The model consists of k users (indexed by u) sharing the
computational resources on a parallel platform composed of
m identical processors (indexed by q). The resources are
managed by a centralized scheduler. Figure 1 illustrates some
of the used notation.

A user workflow is composed of γ(u) successive campaigns.
Each user campaign i ∈ [1, γ(u)] is submitted at a time denoted
by t

(u)
i and is composed of a set of independent and non-

preemptive sequential jobs. The submission time t
(u)
i of a

campaign is not fixed a priori as it depends on the termination
of the previous campaign (but it is a part of the instance of
a problem). A campaign is defined as the set of jobs J (u)

i

released in one submission. n(u)
i denotes the number of jobs

of u in the i-th campaign and n(u) the total number of jobs
released in the workflow 1.
J

(u)
i,j denotes a job from the i-th campaign issued by user

u; j is the index of this job in the campaign. p(u)
i,j denotes the

job’s length; the length is known when the job is submitted
(the clairvoyant model). The job start time is denoted by σ(u)

i,j ;
its completion time is denoted by C(u)

i,j .
For a campaign J

(u)
i its start time σ

(u)
i is the time the

first job starts, σ(u)
i , minjσ

(u)
i,j ; campaign’s completion time

C
(u)
i is the time the last job completes, C(u)

i , maxjC
(u)
i,j .

The total workload within campaign i is: W (u)
i =

∑
j p

(u)
i,j .

1There is a particular case where the jobs can be infinitely divided into
smaller pieces (i.e. fine grained). For instance, this is the case of BOINC
divisible loads [1]. In BOINC the scheduler can interrupt jobs of one user
without loss of computation. Campaigns from two or more users can even be
split in several parts and interleaved, without idle spaces between them.

The campaign’s flow time ∆
(u)
i is equal to the time jobs of

the campaign stay in the system, ∆
(u)
i , C

(u)
i − t

(u)
i . The

campaign’s stretch D
(u)
i is equal to the campaign flow time

divided by its surface W (u)
i , D(u)

i =
∆

(u)
i

W
(u)
i

.
A user u cannot submit her-his next campaign i + 1 until

her-his previous campaign i completes, thus t(u)
i+1 ≥ C

(u)
i . The

time between the completion of campaign i and the submission
of the next one (i + 1), called the think time, is denoted as
tt

(u)
i+1 = t

(u)
i+1 − C

(u)
i .

The considered model is on-line, meaning that the campaign
J

(u)
i ’s submission time and its workload is known only after

the campaign is submitted (i.e. at time t
(u)
i ). However, as

soon as a campaign is submitted, its jobs lengths are known
(clairvoyant model).

The scheduling goal is to minimize the per-user and per-
campaign stretch D(u)

i . We consider stretch (in contrast to the
flow time), as it weights the responsiveness of the system by
the assigned load; it is natural to expect that small workloads
will be computed faster than larger ones. We consider it on
a per-user basis, as this results in fairness of the system
towards indivual users. Moreover, considering stretch of each
campaign (rather than the overall stretch) guarantees that the
system is responsive: that not only the final result, but also the
intermediate ones are timely computed.

The problem of minimizing per-user and per-campaign
stretch D

(u)
i is NP-hard, as when restricted to a single user

(k = 1) and to a single campaign (γ = 1), it is equivalent to the
minimization of the makespan on identical parallel processors
(P ||Cmax).

IV. ALGORITHM

A. Principle

We propose in this section a new scheduling algorithm
called OStrich (from “per-User guaranteed Stretch”). The
algorithm guarantees the worst-case stretch of each campaign
of each user D

(u)
i to be proportional to the campaign’s

workload and the number of active users in the system.
OStrich’s principle is to create a virtual fair-sharing schedule
that determines the execution priorities of the campaigns in
the real schedule. The algorithm maintains a list of ready-to-
execute campaigns ordered by their priorities and executes the
following two steps as soon as a processor becomes available:
• Select from the list the next job of the campaign with the

highest priority.
• Schedule this job on the available processor.
Any scheduling policy can be used to determine the exe-

cution order of jobs within a single campaign; for instance
LPT [17] (or, more appropriately, MLPT [18]) or Shortest
Processing Time (SPT) [19].

The virtual fair-sharing schedule is maintained by dividing
the resources between the active users at each given moment.
The resources are divided evenly among the users, indepen-
dently of users’ submitted workload. The priority of a user’s
campaign is determined by its virtual completion time, which



is simply the completion time in the virtual schedule. The
campaign with the shortest virtual completion time has the
priority of execution. This virtual completion time is denoted
by C̃(u)

i for a campaign J (u)
i (more generally, we will use x̃

for denoting x in the virtual schedule). That way, if a user u
submits a campaign at time t(u)

i , its virtual completion time
is defined as the total workload of the campaign divided by
its share of resources, added by its virtual start time. More
formally:

C̃
(u)
i (t) = W̃

(u)
i /(m/k̃(t)) + σ̃

(u)
i = k̃(t)W̃

(u)
i /m+ σ̃

(u)
i

Note that the share of a user is defined as the number
of machines m divided by the number of active users at
moment t, denoted by k̃(t). This is the number of users
with unfinished campaigns at time t, according to the virtual
schedule. Formally, k̃(t) is defined as

k̃(t) =
∑k

u 1{u, t}

where 1{u, t} is an indicating function that returns 1 if
∃i | C̃(u)

i > te and 0 otherwise.
A campaign starts in the virtual schedule after it is submitted

(σ̃(u)
i ≥ t(u)

i ), but also not sooner than the virtual completion
time of the previous campaign (as the campaign in the real
schedule can be completed earlier than in the virtual schedule):

σ̃
(u)
i = max(t

(u)
i , C̃

(u)
i−1).

The second condition guarantees that at each time moment,
at most one campaign of each user is executing in the virtual
schedule; thus the number of allocated processors depends on
the number of active users, and not the workload.

The virtual completion time of the campaigns can be
updated on two events: the submission of a new campaign
and the completion of a campaign in the virtual schedule.
These events may change the number of active users k̃(t) and,
thus, modify the the virtual completion times of other active
campaigns.

Suppose that a new campaign i is submitted at time t(u)
i . The

value of k̃(t
(u)
i ) is updated to reflect the number of active users

at t(u)
i . Thus, every time k̃ changes, the virtual completion time

of the campaigns must follow this change as well. Besides, at
each event e occuring at time te, the workload of a campaign
(W̃ (u)

i ) must be redefined based on how much it is left to be
executed in the virtual schedule. The remaining workload of
a campaign is defined by taking the time passed since the last
event ocurrence te−1 and multiplying it by campaign’s share
of resources on that time interval. Considering all the events
passed after the campaign’s submission, the workload is:

W̃
(u)
i =

∑
p

(u)
i −

∑
e(k̃(te−1).(te − te−1)/m),
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Fig. 2. Virtual and real schedule generated by the OStrich algorithm with 3
users

B. Example

The figure 2 shows an example with the real and the virtual
schedule generated by the OStrich algorithm in a system with
6 identical machines from t = 0 to t = 7. This example shows
4 submissions issued from 3 different users: two submissions
at time t = 0, from users 1 and 2, and two submissions at
times t = 2 and t = 5, from user 3. From t = 0 to t = 2,
two users, 1 and 2, are the only ones in the system (k̃(t) = 2,
0 ≤ t ≤ 2). The virtual schedule is constructed by sharing the
machines equally between them and their virtual completion
times are C̃(1)

1 = 16 and C̃(2)
1 = 6. The real schedule contains

only jobs from user 2 since his virtual completion time is the
smallest (thus, he has execution priority).

The situation changes at t = 2 when user 3 submits her first
campaign. By that time, the users 1 and 2 had each a share of 6
in the virtual schedule but their virtual completion times were
not exceeded. Now, the machines are equally shared between
3 users (k̃(2) = 3). The virtual completion of user 3 is set to
C̃

(3)
1 = 7 and the virtual completion times of users 1 and

2 are updated to C̃
(1)
1 = 23 and C̃

(2)
1 = 8, according to

their remaining workloads. User 3 is the user with the highest
priority. In the real schedule, the first campaign of user 2 is
interrupted—while executing jobs are not interrupted, once
user 2’s job completes, user 3’s job starts. So, in order to
use machines M5 and M6, user 3 must wait until t = 3.

From t = 3 to t = 5 the first campaign of user 3 is finished
and also the first campaign of user 2, as its remaining jobs are



executed. Additionally, some jobs of the first campaigns of
user 1 finally start to execute. At t = 5 the second campaign
of user 3 is submitted, but note that the virtual completion time
of her first campaign is C̃(3)

1 = 7. As σ(3)
2 < C̃

(3)
1 , σ̃(3)

2 = C̃
(3)
1

and her virtual completion time is set to C̃(3)
2 = 11. The user 3

retakes the priority but note that even if her first campaign was
finished in the real schedule at t = 5, her next campaign must
wait until σ̃(3)

2 = 7 to be taken into account. This mechanism
keeps the real schedule in accordance with the virtual (and
fair) schedule: a user is not able to take a greater share of the
resources than what is assigned in the virtual schedule.

The result of OStrich is a schedule with campaigns being
interleaved and executed in many pieces, according to the
changing priorities between users.

C. Implementation

OStrich is composed of two modules that run in parallel.
They share a queue in order to place the campaigns that are
ready to execute. The first module generates information about
arriving campaigns and puts them into a queue. The second
module chooses campaigns by EDF and schedule them as soon
resources are available.

The algorithm is implemented by two loop procedures that
run in parallel. These procedures share a event list and a
priority queue with the campaigns that are ready to execute.
The first procedure receives the submissions, creates the
corresponding events and puts them into the list. The second
procedure consumes the events from the list and updates the
schedule. Bellow, we write a simplified description of these
procedures.

1: events = new ordered list()
2: campaigns = new queue()
3: k = new set()
4: while true do
5: wait(next)
6: sub = new event(next, SUBMISSION)
7: insert(events, sub)
8: enqueue(campaigns, next)
9: end while

The first 3 lines are the global variables shared by both
procedures: an ordered list of events, a priority queue of
campaigns and a set to hold the active users. The line 5 blocks
the procedure, waiting for the next campaign submission.
When this happens, a new event of type submission is created
(line 6) and inserted into the list of events (line 7). The new
campaigns is enqueued and is ready for execution (line 8).

In this procedure, the line 2 removes the next event from
the list. This list is ordered by the event times. The number of
active users is updated according to the new event (line 3). If
the event is a submission, the corresponding virtual completion
time event is created (lines 4, 5 and 6). This can trigger the
update of the existing virtual completion times (line 8. Finally,
the schedule is updated according to the priorities defined by
the virtual completion times (lines 9 and 10).

1: while true do
2: e = remove(events)
3: update k(e, k)
4: if type(e) = SUBMISSION then
5: v = new event(e.next, V COMPLETION)
6: insert(events, v)
7: end if
8: update vcompletions(events)
9: priorities = vcompletions(events)

10: update schedule(machines, campaigns, priorities)
11: end while

V. THEORETICAL ANALYSIS

The goal of this section is to study the worst case of the
maximal stretch within a campaign. The idea of the proof is to
bound the completion time of the last job of a campaign using
a global surface argument compared to the virtual schedule.

In this section we will denote by V the virtual schedule; and
by R the real schedule. To simplify the formulation of proofs,
we will also say that the virtual schedule V “executes” jobs
(even though V is just an abstraction used for prioritizing real
jobs). At time t, a job is executed by V if in V there is a
fraction of processors assigned to this job.

A. Worst-Case Bound

As V can assign a job an arbitrary fraction of processors
(from ε to m), a schedule in V is a series of compact rectangles
(separated by idle times when there are no jobs in the system).
R must execute each job on a single processor; thus R is not
as compact as V. The question is whether the idle times that
might additionally appear in R can cause a systematic delay
of R compared to V. The following lemma shows that once
R is delayed by a surface of mpmax, the delay does not grow
further, as there is always a ready job to be executed.

The lemma considers only the idle time in the “middle” of
the schedule, i.e., after the start time of the first job and up to
the start time of the last job; this is sufficient to characterize
the on-line behavior of OStrich.

Lemma 1: The total idle surface in R (counted from the
earliest to the latest job start time) exceeds the total idle surface
in V by at most mpmax.

Proof: Consider first a V schedule with no idle times.
Assume by contradiction that t is the first time moment when
the total idle surface in R starts to exceed mpmax. Thus, at
least one processor is free at time t and there is no ready job
to be executed. As V has no idle times, at time t the surface
executed by V exceeds the surface executed by R by more
than mpmax. Thus, the surface exceeding mpmax is ready to
be executed at R. As a single job has a surface of at most pmax,
a surface of mpmax is composed of at least m jobs. Thus, at
least m jobs are being executed, or ready to be executed in R.
This contradicts the assumption that there is at least one free
processor at R.



If there is idle time in V, each idle period can be modelled
as a set of special jobs {JI} that are executed by V, but not
necessarily (and/or not completely) by R. If R executes {JI}
entirely, the thesis is true by the argument from the previous
paragraph (as {JI} contribute the same amount

∑
pI of idle

surface to V and to R). If R executes {JI} partially (i.e. as
{J ′I}, with 0 ≤ p′I ≤ pI ) the contribution of these jobs to the
idle surface of R (

∑
p′I ) is smaller than to V (

∑
pI ).

R starts to execute jobs from campaign J
(u)
i when this

campaign has the shortest completion time in V. Yet, it is
possible that after some, but not all, jobs from J

(u)
i have

started, another user v submits his/her campaign J
(v)
j which

has a lower surface than what remains of J
(u)
i , and thus

gains higher priority. Thus, J (u)
i is executed in R in so-called

pieces: two jobs Jk, Jl ∈ J
(u)
i belong to the same piece

iff no job from other campaign J
(v)
j starts between them

(@J ′ : J ∈ J (v)
j ∧ σJk < σJ′ < σJl).

The following lemma bounds the completion time of the
last piece of the campaign. After a campaign completes in
the virtual schedule, it cannot be delayed by any other newly-
submitted campaign; thus it has the highest priority and is
executed in one piece (i.e., the last piece). The lemma upper-
bounds the virtual surface having higher priority by the surface
of the campaign, as in the worst case k users submit campaigns
of equal surface, thus ending at the same time in V, and thus
being executed in arbitrary order in R.

Lemma 2: The completion time C(u)
i,q of the last piece q of

a campaign J (u)
i is bounded by a sum:

Ci,q ≤ t(u)
i +k

W
(u)
i−1

m
+pmax+(k−1)

W
(u)
i

m
+pmax+

W
(u)
i

m
+p(u)

max,

where t
(u)
i + k

W
(u)
i−1

m expresses the time the campaign waits
until the virtual completion time of the previous campaign
J

(u)
i−1 of the same user; (k − 1)

W
(u)
i

m bounds the time needed
to execute other users’ campaigns that can have higher priority;
W

(u)
i

m +p
(u)
max bounds the execution time of the campaign J (u)

i ;
and two pmax elements represent the maximum lateness of R
compared to V; and the maximum time needed to claim all
the processors.

Proof: A campaign starts in the virtual schedule σ̃
(u)
i

no sooner than the virtual completion time of the previous

campaign σ̃(u)
i = max(t

(u)
i , C̃

(u)
i−1). As C̃(u)

i−1 = σ̃
(u)
i−1 +k

W
(u)
i−1

m ;
and t(u)

i ≥ σ(u)
i−1 (the next campaign cannot be released before

the previous one starts), σ̃(u)
i ≤ t(u)

i + k
W

(u)
i−1

m .
There is no idle time in R in the period [σ̃u

i , σ
u
i,q), otherwise,

the last piece could have been started earlier.
We denote by S the surface of jobs executed in R after the

time moment σ̃(u)
i (when the campaign starts in the virtual

schedule), and until σ̃(u)
i,q . We claim that S ≤ mpmax +

(k − 1)Wu
i + W ′ui where W ′ui is the surface of jobs from

campaign J
(u)
i executed until σu

i,q . The Figure 3 facilitates
the visualization of these notations, including the surface S
(shaded area).

To prove the claim, we analyze job J executed in R in the
period [σ̃u

i , σ
u
i,q). First, J is not executed in V after σu

i,q . If J is
in V after σu

i,q , J has lower priority than jobs from campaign
J

(u)
i , so OStrich would not choose J over jobs from campaign
J

(u)
i .
Second, if J is executed in V before σ̃u

i , it means that R
is “late” in terms of executed surface: but the total surface of
such “late” jobs it at most mpmax (from Lemma 1).

Thus, if J has a corresponding surface in the virtual
schedule exectued in the period [σ̃u

i , σ
u
i,q), the surface S of

the jobs started in the real schedule in this period is equal
to the surface of the virtual schedule between [σ̃u

i , σ
u
i,q) (plus

the lateness mpmax). Recall that from time σu
i,q till the start

of the last job of J (u)
i , the campaign J

(u)
i has the highest

priority (as it is not interrupted by any other campaign). Thus,
at the latest, σu

i,q corresponds to the time moment C̃(u)
i in

the virtual schedule when the campaign J (u)
i completes (plus

the lateness pmax). Thus, by definition of the virtual schedule,
σu
i,q ≤ pmax + σ̃

(u)
i + k

W
(u)
i

m .
Starting from σu

i,q , the remaining jobs of J (u)
i start and

complete. J (u)
i can claim all processors at the latest pmax

after σu
i,q . Then, by using classic lower bounds, it takes

W
(u)
i /m+ p

(u)
max to complete the campaign.

V
(Virtual)

R
(Real)

C(u)

i-1

user u

time
C(u)

i,q
σ(u)

i,q
S

t(u)

i
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i

~
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i

~

J(u)

i
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Fig. 3. Analysis of OStrich: bound for the campaign stretch

The following theorem states that in OStrich the stretch of
a campaign depends only on the number of active users and
the relative surface of two consecutive campaigns. In contrast,
the stretch does not dependent on the current total load of the
system; thus heavily-loaded users do not influence the less-
loaded ones.

Theorem 1: The stretch of a campaign is proportional to the
number of active users k and the relative surface of consecutive
campaigns. D(u)

i ∈ O(k(1 +
W

(u)
i−1

W
(u)
i

)).



Proof: The result follows directly from Lemma 2. For
campaign J (u)

i , the stretch D(u)
i is equal to the campaign flow

time ∆
(u)
i = C

(u)
i − t(u)

i divided by its surface W (u)
i , D(u)

i =
C

(u)
i −t(u)

i

W
(u)
i

. By Lemma 2,

Ci,q ≤ t(u)
i +k

W
(u)
i−1

m +2pmax +(k−1)
W

(u)
i

m +
W

(u)
i

m +p
(u)
max.

Thus, D(u)
i ≤ k

m (1 +
W

(u)
i−1

W
(u)
i

) + 3 pmax

W
(u)
i

. For a given super-
computer, m is constant; similarly, the maximum size of a job
pmax can be treated as constant, as typically it is set as a limit

by system administrators. Thus, D(u)
i ∈ O(k(1 +

W
(u)
i−1

W
(u)
i

)).

B. Tightness

This section analyses the tightness of the O(k(1 +
W

(u)
i−1

W
(u)
i

))

bound proposed in Theorem 2. We start with a negative result
that says that in heavily-loaded systems, campaigns have to
be executed sequentially, thus at least one of them will have
a stretch in O(k).

Proposition 1: No scheduling algorithm can achieve better
stretch than O(k).

Proof: Consider an instance with k users, each submitting
at t = 0 a campaign with m jobs of unit size. The campaigns
have to be executed sequentially, so there is at least one user
whose campaign completes at time k.

The following proposition shows an instance in which the

bound O(k(1 +
W

(u)
i−1

W
(u)
i

)) (Theorem 2) is asymptotically tight.
The instance is composed of a series of long campaigns fol-
lowed by a series of short campaigns. A user who had his/her
long campaign executed at the beginning, must wait with the
short campaign not only the time needed to complete all other
long campaigns, but also possibly other short campaigns.

Proposition 2: The bound D
(u)
i ∈ O(k(1 +

W
(u)
i−1

W
(u)
i

)) is
asymptotically tight.

Proof: Consider an instance with m processors and k
users having two campaigns each. At t = 0, each user
submits a campaign with m jobs of size pmax. The second
campaign of a user is submitted immediately after the com-
pletion of the first campaign, with m jobs of size p = 1.
As campaigns {J (u)

1 } have the same priority; and cam-
paigns {J (u)

2 } have the same priority, OStrich can produce
any schedule that executes first all the campaigns {J (u)

1 },
then all campaigns {J (u)

2 }. Thus, an admissible schedule is
(J

(1)
1 , J

(2)
1 , . . . , J

(k)
1 , J

(k)
2 , J

(k−1)
2 , . . . , J

(1)
2 ). The completion

time of J (1)
2 is C(1)

2 = kpmax + k, thus the stretch D
(1)
2 =

(k − 1)pmax + k = 1 + (k − 1)(1 +
W

(1)
1

W
(1)
2

).

VI. SIMULATIONS

In this section, we analyze the performance of OStrich on
the trace from the LPC-EGEE cluster [20]. We first describe
how to detect campaigns in standard workloads (that do
not provide information about dependencies between jobs).
Then, we describe the settings of the simulations. Finally, we
compare the performance of OStrich to the standard scheduler
(Maui with FCFS and backfilling) used on the cluster.

A. Detecting campaigns in real workloads

In recent works about workload modeling [3]–[5], Feitelson
et al. consider that the actions of a user (i.e. his/her job
submission behavior and frequency) is influenced by the
actions of the other users and by the scheduler decisions. This
user feedback has an impact on the observed workload. This is
justified by the fact that the user is aware of the current system
behavior and his/her future actions directly depend on the
system’s actual performance. To incorporate this feedback into
the model, Feitelson proposes the postulate of dependencies
between jobs, which relies upon the idea of what is called the
think-time, i.e. the delay between the ending of a job and the
submission of a new one. This delay represents the time taken
by the user to analyze the result of an executed job and to
prepare the submission of the next. This is the same concept
as the think-time we use in the Campaign Scheduling model.

In [4], the think-time is used to detect user sessions and
batches in a workload trace. A user session is a period of con-
tinuous work where a same user submits jobs. The continuity
of a session is defined by a time threshold. Interruption of the
user activities above this threshold configures a session break.
Within a session, jobs that are overlapping will be grouped
in what is called a batch. Note that, the notion of campaign
is similar to the notion of batch: a set of jobs, submitted
asynchronously by a user and that will run independently from
the others.

[4] proposes different methods to detect users’ batches in
a workload log. The LAST algorithm was originally proposed
in [6]. In this approach, two jobs that are submitted one after
the other belong to the same batch if the last one was submitted
before the end of the first one. The ARRIVAL algorithm is
based on the inter-arrival times of the jobs, i.e. it does not
take into account their runtimes. The MAX algorithm states
that a job belongs to a batch if it overlaps at least one of the
jobs of the batch. In this work, the MAX algorithm is adopted
since it produces batches that correspond to the concept of
campaign described in the model.

B. Simulations Conditions

To run the simulations, we choose the LPC-EGEE2 trace
from the Parallel Workload Archive [20] (cleaned version).
This trace comes from a cluster that is part of the EGEE3

project. This cluster has the particularity of being composed
of multiple Bag-of-Tasks (i.e. serial jobs), which fits well

2http://www.cs.huji.ac.il/labs/parallel/workload/l lpc/index.html
3http://public.eu-egee.org/intro/

http://www.cs.huji.ac.il/labs/parallel/workload/l_lpc/index.html
http://public.eu-egee.org/intro/
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Fig. 4. Campaign stretches along time (original log: Maui, FCFS)

the concept of campaign. The system is composed of 140
identical machines. The scheduler used to produce the log was
Maui [8] with its default EASY configuration, that is, FCFS
with backfilling. However, since all the jobs are sequential,
there is actually no backfilling: whenever a CPU is available,
this is enough for executing the job at the head of the wait-
queue, and thus no other job is allowed to skip it.

The trace is long (10 months); it contains several cuts (due
to electrical problems, management system reconfiguration,
cooling failures...) and machines’ failures. We selected the
longest period without failures as the input of our algorithm
(from December 6 2004 to January 24 2005). The workload
covered in this period is issued from 33 users. The perfor-
mance of OStrich is compared to the one extracted from the
log.

C. Results

The results are plotted in figures 7, 8, 4, 5, 6 and 9.
Figures 7 and 8 show system utilization, or the percentage of

allocated resources over time. OStrich achieves more homoge-
neous utilization while the original log presents a more erratic
behavior. With OStrich the system achieves its maximum
utilization several times. Regarding the periods where the
system load is above 10%, OStrich achieves system utilization
at least 20% greater than the one obtained from the original
log. Not surprisingly, periods of user inactivity are also more
frequent in OStrich. From our point of view, these periods of
machine inactivity could be potentially exploited in at least
two ways: energy saving and execution of best effort jobs.

The figure 4 shows the stretch values obtained by each
campaign at their completion times in the original log. As
we can observe, the stretches are widely spread. To better
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Fig. 5. Campaign stretch values distribution (original log: Maui, FCFS)

0

2500

5000

7500

1 2 3 4
Stretch Value

C
ou

nt

Fig. 6. Campaign stretch values distribution (OStrich)

understand the distribution of these stretches we plot figure 5
for the original log then figure 6 for the workload replayed in
the simulation with OStrich. In these figures, some outliers,
with very high values, have been removed to clarify the
graphs.4 To be as close as possible to the original log in our re-
scheduling we chose to keep these campaigns in the replay but

4These high values come from the fact that there is no restriction for the
maximum length of a job (i.e. pmax). In consequence, few users monopolize
the platform at some periods in the trace, filling the machine with very long
jobs and hence causing big stretches for campaigns that are composed of short
jobs.



Fig. 7. System resources utilization (original log: Maui, FCFS)

Fig. 8. System resources utilization (OStrich)

remove from the figures the few very large stretches (stretches
of more than 1000) due to this particular behavior. In both
figures, the amount of campaigns removed is less than 4%.
The results show stretch values ranging from 1 to 4 but with
OStrich they are much more concentrated near 1, while in the
original log the values are more spread with a higher density
between 1.3 and 1.5. For the original log, the mean stretch is
1.61, for OStrich it is 1.12 on the dataset used to plot figures
5 and 6 (without the outliers). So, for a great majority of
campaigns (64%), the stretch obtained by OStrich was exactly
of 1; 90% of the campaigns have a stretch of less than 1.4,
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Fig. 9. Median of campaign stretch: comparison between OStrich and Maui
(FCFS)

and 99% of the campaigns have a stretch of less than 2.15.
In order to verify whether all the users have similar per-

formance, in Figure 9 we extract the median stretch value
obtained by each user on the complete dataset (including
the outliers). The median was used instead of the average
to avoid outlier’s interference. In addition to emphasizing the
superiority of OStrich regarding the stretch values, this graph
shows a more fair distribution among the 33 different users
active during the period of the selected trace, between the
trace replayed in OStrich and the original log.

VII. EXTENSION: GENERAL (NON-CAMPAIGN) ON-LINE
SCHEDULING PROBLEM WITH OSTRICH

Up to this point, we considered the problem of scheduling
a specific type of workload in which each user submitted
campaigns of jobs: all the jobs from a campaign J (u)

i are ready
at the same time t(u)

i ; and the subsequent campaign J (u)
i+1 is not

ready until the previous campaign completes (t(u)
i+1 ≥ C

(u)
i ).

For this problem, OStrich guarantees stretch proportional to
the number of active users. In this section, we show how
OStrich can be used for the general on-line scheduling problem
with multiple users.

In this section, we will denote as ι(u)
l the l-th job of user

u (we do not use the previous notation of J (u)
i,j as it assigns a

job to a campaign). r(u)
l denotes job’s release date. Similarly

to the campaign scheduling problem, we consider an on-line,
clairvoyant model: job ι

(u)
l is not known until it is released;

job’s length p(u)
l is known at the time the job is released.

An instance of the general on-line scheduling problem can
be transformed to the campaign scheduling problem. The
transformation is analogous to building batches; yet, unlike
the classic approach [21], we don’t mix jobs of different



users in one batch. In the following, we will use the term
“batch” to denote a set of jobs; these batches will be treated
as campaigns by the scheduling algorithm. For user u, the
first batch J

(u)
1 is constructed by one or more jobs released

at the same time r(u)
1 , i.e., J (u)

1 = {ι(u)
l : r

(u)
l = r

(u)
1 } and

t
(u)
1 = r

(u)
1 . Then, if a previous batch has not yet completed

in the virtual schedule, the following jobs are joined into a
batch: J (u)

i = {ι(u)
l : t

(u)
i−1 ≤ r

(u)
l ≤ C̃

(u)
i−1}; the batch

is released immediately after the previous batch completes,
t
(u)
i = C̃

(u)
i−1. If a user does not have an executing batch in the

virtual schedule, similarly to the first batch, the batch gathers
all the jobs submitted at the same moment and is released
immediately.

The mapping allows for a similar nature of a worst-case
bound as for the campaign scheduling problem. However,
instead of bounding the stretch of a campaign, we will bound
the job’s ι(u)

l flow time δ(u)
l . As previously, the bound depends

only on the number of active users k and the workload of the
user—and not the total load of the system.

Theorem 2: The maximum flow time of a job is propor-
tional to the number of active users k and the total surface of
two consecutive batches, F (u)

l ≤ 3pmax + k
m (W

(u)
i−1 +W

(u)
i ).

Proof: Job ι
(u)
l is assigned to a batch J

(u)
i which is

released, at the latest, when the previous batch completes,
t
(u)
i = C̃

(u)
i−1. As the job was not assigned to the previous

batch, its release date r(u)
l > t

(u)
i−1 = σ̃

(u)
i−1 (the last equation

is true as there is at most one active batch of u, thus it can
be started immediately). Thus, a job waits until it is started in
the virtual schedule from σ̃

(u)
i−1 till C̃(u)

i−1, i.e., W (u)
i−1k/m.

Batches are treated by OStrich like campaigns, thus, by
Lemma 2, the last job of batch J

(u)
i completes in the real

schedule by Ci,q ≤ σ̃(u)
i +2pmax+(k−1)

W
(u)
i

m +
W

(u)
i

m +p
(u)
max.

Thus, Ci,q ≤ r(u)
l + k

W
(u)
i−1

m + k
W

(u)
i

m + 3pmax.

VIII. CONCLUDING REMARKS

We have presented in this work a new scheduling algorithm
for the on-line scheduling problem with multiple submissions
issued by many users. OStrich algorithm has been designed
to handle the problem of fairness between users by defining
execution priorities according to a criterion based on stretch.
The principle of the proposed solution is to dynamically
determine the priorities between the campaigns based on a
fair-share virtual schedule. We proved that OStrich delivers
performance guarantee for the max stretch value of a user
campaign that depends only on the user workload and on the
number of active users. Furthermore, we demonstrated that the
same algorithm can be used for the general on-line scheduling
problem; for each user, the maimum flow time of a job again
depends only on the number of active users and the user’s
workload, and not the total load of the system.

The performance of our algorithm is assessed by running
simulations based on actual workloads. The results show
that OStrich achieves lower stretches than the FCFS based
Maui scheduler for sequential jobs; moreover distribution of

stretches among users is also more equal. Thus, OStrich
delivers a good compromise between fairness and user per-
formance.
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