Les rapports de recherche du LIG

CoMET: Compressing Microcontroller Execution
Traces to Assist System Understanding

Azzeddine AMIAR, PhD student, LIG, University of Grenoble (UJF), France

Mickaél DELAHAYE, Post Doc, LIG, University of Grenoble (UJF), France

Yliés FALCONE, Associate Professor, LIG, University of Grenoble (UJF), France
Lydie du BOUSQUET, Associate Professor, LIG, University of Grenoble (UJF), France

http://rr.liglab.fr

Laboratoire d'Informatique de Grenoble

RR-LIG-031
février 2013

ISSN'21.05-0422

CoMET: Compressing Microcontroller Execution
Traces to Assist System Understanding

Azzeddine Amiar, Mickaél Delahaye, Ylies Falcone, Lydie du Bousquet
Laboratoire d’Informatique de Grenoble (LIG), UMR 5217
UJF-Grenoble 1
BP 72, 38402 St Martin d’Heres, France
Email: FirstName.LastName @imag.fr

Abstract—Recent technology advances have made possible the
retrieval of execution traces on microcontrollers. However, even
after a short execution time of the embedded program, the
collected execution trace contains a huge amount of data. This
is due to the cyclic nature of embedded programs. The huge
amount of data makes extremely difficult and time-consuming
the understanding of the program behavior. Software engineers
need a way to get a quick understanding of execution traces. In
this paper, we present an approach based on an improvement
of the Sequitur algorithm to compress large execution traces
of microcontrollers. By leveraging both cycles and repetitions
present in such execution traces, our approach offers a compact
and accurate compression of execution traces. This compression
may be used by software engineers to understand the behavior
of the system, for instance, identifying cycles that appears most
often in the trace or comparing different cycles. Our evaluations
give two major results. On one hand our approach gives high
compression rate on microcontroller execution traces. On the
other hand software engineers mostly agree that generated
outputs (compressions) may help reviewing and understanding
execution traces.

Index Terms—trace comprehension; cyclic program; execution
trace; trace compression; Sequitur

I. INTRODUCTION

Most of the automated systems contain microcontrollers,
from car engines to domestic appliances. Although there are
many development environments for embedded applications,
there are few tools dedicated to their analysis. A manual
analysis is a tedious and time consuming task [[1]. In our work,
we aim to make it easier for software engineers to understand
a microcontroller behavior by exploring execution traces.

In general, software engineers have to either analyze elec-
trical signals generated from components, or try to reproduce
microcontroller behaviors using simulation [2], [3]. However,
the manual process and the lack of information about external
devices that are connected to a microcontroller, does not
allow software engineers to reproduce the real behavior of
the embedded application. In the past few years, a technique
has been proposed to collect basic execution traces using
a specific probe [4]. Recording microcontroller execution
enables software engineers to collect information about the
system behavior as an execution trace without input/output
data [5], [6]. However, collected execution traces are often
very large [7]], [8] and incomprehensible. The huge amount
of data is mainly due to the real-time and cyclic nature of

microcontroller applications. Consequently, even for the most
experienced engineer, a manual analysis of such traces takes
significant effort and time. Since such applications are cyclic, a
limited number of different instructions are executed numerous
times.

In this paper, we aim to help software engineers to look over
an execution trace faster, and to make more informed decisions
on which part(s) of the trace they need to analyze in detail. To
facilitate the comprehension of execution traces, we propose
a compression approach based on a grammar generation. We
formalize and extend the Sequitur algorithm [9], which, given
an input trace, produces a grammar by leveraging regularities
frequently found in the input trace. The output grammar is
an accurate but compact representation of the input trace. Our
algorithms are implemented in a tool named J-Cyclitur, which
is written in the Java programming language and is freely
available at http://i032.forge.imag.fr. The J-Cyclitur enables
us to compress several real traces coming from embedded
applications (gathered using the ETM probe) and network
traffic simulations.

The rest of the paper is organized as follows. The next
section exposes the context of applications that are embedded
on microcontrollers. Section proposes a formalization of
the Sequitur algorithm, this formalization is based on several
informal descriptions found in the literature. In Section we
present the Cyclitur algorithm, which is an extension of the
Sequitur algorithm in the context of cyclic embedded appli-
cations. Our algorithm is empirically validated in Section
Section discusses related work, and, Section draws
some conclusions and perspectives.

II. MICROCONTROLLER APPLICATION CONTEXT

A microcontroller is an integrated circuit that consists of
all elements of a microprocessor-based structure [10], such
as a microprocessor (CPU), data memory (RAM, EEPROM),
program memory (ROM, OTPROM, UVPROM or EEPROM),
and input/output. Thanks to the affordable prices of mi-
crocontrollers, the development of embedded applications is
now within reach of non-specialists. For example, a 32-bit
microcontroller, with 128Kb of SRAM and 1Mb FLASH, costs
about 7 USD, and can meet numerous use cases.

In recent past, debugger engineers used oscilloscopes to
analyze embedded applications by interpreting electric sig-

http://io32.forge.imag.fr

nals. Thanks to the arrival of new microcontrollers, the sit-
vation is changing. For instance, the microcontroller ARM
Cortex-Mx [11] includes a part dedicated to trace collection,
called ETM cell (Embedded Trace Macrocell) [4]. Using a
probe [[12], it is possible to obtain a trace in the form of a
series of the so-called instruction-sequence breaks that reflects
the execution. A sequence break occurs during the execution
of a program when next instruction does not directly follow
the current one, it is a jump.

A typical example of C program for microcontrollers is
shown in Listing [T} If the condition at line 31 evaluates to
false, the next executed instruction is not the instruction at
line 32 but the instruction at line 35. The destination addresses
of jumps are recorded by the ETM cell. The probe enables
the user to extract the execution trace as a set of sequence
breaks ordered by their occurrence in time. The execution trace
obtained for the particular program shown in Listing[T|contains
the following lines: 2, 7, 10, 13, 16, 19, 22, 25, 31, 35 and
39, where each line corresponds to a sequence break.

As can be seen in Listing such program contains an
infinite main loop (starting at line 2), to scan actively the
inputs of the microcontroller and calculate the outputs. The
huge amount of data contained in the trace (even after a short
time execution) is mainly due to this infinite loop.

In this paper, we address the first two steps of the debug pro-
cess, namely the comprehension and the analysis of execution
traces. Indeed, we propose a method to compress the execution
traces [13], [7], [14]] of microcontroller embedded programs.
We exploit the presence of the infinite main active loop to
generate a compression. We call loop header the instruction
that defines this main active loop. The compression is based
on the Sequitur algorithm, which is discussed in the following
section.

III. A FORMALIZATION OF SEQUITUR

In the literature, Sequitur [9] is described at an informal
level. In this section we propose a formalization of Sequitur
and the grammars that it generates.

Preliminaries: An alphabet X is a finite set of symbols.
Given an alphabet ¥, a string (or word) is a sequence of
symbols of . The set of all finite strings on X is noted X*.
The length of a string o € ¥*, noted |o|, is the number of
symbols in ¢. The empty string over X, i.e., the string of
length 0, is noted ex, or € when clear from context. By o; we
indicate the i-th element of o. A digram is defined as a string
of length 2.

A. Sequitur Grammars

Below we present the grammar generated by Sequitur and
their properties.

Definition 1 (Sequitur Grammar). A Sequitur grammar is a
tuple (3,1, S, A) where:

e Y is a finite alphabet of terminal symbols,

o I is a disjoint finite alphabet of nonterminal symbols,

e S €T is a start symbol, i.e., a particular nonterminal,

Listing 1. Example of C embedded application code

int main (void) {
while (1) {
static JOY_State_TypeDef JoyState =
static TS_STATEx TS_State;
JoyState = IOE_JoyStickGetState();
switch (JoyState) {
case JOY_NONE:
LCD_DisplayStringLine (Line5,
break;
case JOY_UP:
LCD_DisplayStringLine (Line5,
break;
case JOY_DOWN:
LCD_DisplayStringLine (Line5,
break;
case JOY_LEFT:
LCD_DisplayStringLine (Line5,
break;
case JOY_RIGHT:
LCD_DisplayStringLine (Line5,
break;
case JOY_CENTER:
LCD_DisplayStringLine (Line5,
break;
default:
LCD_DisplayStringLine (Line5,
break;

JOY_NONE;

"JoY:

"JoY:

"JoY:

"JOY: LEFT ");

"JOY: RIGHT ");

"JOY: CENTER ");

"JOY: ERROR ");
}
TS_State =
Delay (1) ;
if (STM_EVAL_PBGetState (Button_KEY) == 0) {
STM_EVAL_LEDToggle (LED1) ;
LCD_DisplayStringLine (Line4,
}
if

IOE_TS_GetState();
"Pol: KEY Pressed ");

(STM_EVAL_PBGetState (Button_TAMPER) == 0) {
STM_EVAL_LEDToggle (LED2) ;

LCD_DisplayStringLine (Line4, "Pol: TAMPER Pressed ");
}
if (STM_EVAL_PBGetState (Button_WAKEUP) != 0) {
STM_EVAL_LEDToggle (LED3) ;
LCD_DisplayStringLine (Line4, "Pol: WAKEUP Pressed ");

}
}
}

e and A CT x (XUT)* is a finite set of production rules
(or simply rules),

such that the following properties are verified:

o for every nonterminal A, there is a unique string o« such
that (A, «) is in A and |a| is at least 2,

o there is a strict partial order over T, such that, for all
production rule (A,a) € A, every nonterminal in «
precedes A.

A production rule (A,a) € A is noted A — «, where the
nonterminal A (resp. the string «) is called the head (resp.
the body) of the rule. By extension, the grammar body is the
set of the rules’ bodies {« | 3A : (A,a) € A}. The start
rule is the unique rule whose head is the start symbol S. Note
that in Sequitur grammars, there is exactly one rule v — o
per nonterminal v € I'. In addition, a partial order over I
ensures that the grammar is non-recursive (cycle-free). In the
following, a Sequitur grammar is simply called a grammar and
we consider a grammar G = (X,T", S, A). When clear from
context, we might refer to a rule by its head.

NelioCREN e Y N S

1 let S be a fresh nonterminal (S ¢ X U T)

2 G+ (E,ToU{S},S, A U{(S,e)})

3 for i =1 to |w| do

4 append w; to body of rule of S

5 while = Uniqueness(G) v — Utility(G) do

6 if = Uniqueness(G) then

7 let § be repeated digram in G

8 if 3(A,a) € A: =9 then

9 replace the other occurrence of § in G
with A

10 else

1 form new rule (D, d) where D ¢ (S UT)

12 replace both occurrences of § in G
with D

13 A+~ AU{(D,d)}

14 r«~TrTu{D}

15 end

16 else if — Utility(G) then

17 let (A,) € A be a rule used once

18 replace the occurrence of A with o in G

19 A+~ AN{(Aa)}

20 I' T~ {4}

21 end

22 end

23 end

24 return G

Fig. 1. Function Sequitur(X,w, o, Ag)

B. Algorithm

Sequitur, proposed by Nevill-Manning and Witten [9], is
a grammar-based compression algorithm used in a variety
of fields, ranging from bio-informatics to natural language
processing. To generate a compression, Sequitur takes a string
as input, and finds repeated subsequences present in the string
to build a compact grammar. It operates in linear time and
in an online fashion. Each repetition gives rise to a rule in
the grammar, and is replaced with a nonterminal symbol. The
compression process is executed iteratively. To illustrate how
Sequitur operates, let us consider the string: abcabcabcabcabce.
Sequitur generates the following grammar:

S — AAB
A — BB
B — abe

The original string contains 15 symbols and the grammar
generated using Sequitur contains 11 symbols. The compres-
sion results in the explicit capture of the repetitions of the
subsequence abc. We shall explain how this resulting grammar
is obtained using the algorithm of Fig. [I] The referred lines are
those of Fig. [I] Sequitur takes as input four parameters: a set
of terminal symbols ¥, a string w, the initial set of nonterminal

Step ¢ Grammar Action Line(s) D. Uniq. R. Utility
1 1 S—a append 4 true true
2 2 S—ab append 4 true true
3 3 S — abc append 4 true true
4 4 S — abca append 4 true true
5 5 S — abcab append 4 false true
6 - S— AcA add rule 11-14 true true
A — ab

7 6 S — AcAc append 4 false true
A — ab

8 - S— BB add rule 11-14 true false
A — ab
B — Ac

9 - S — BB remove rule 17-20 true true
B — abc

TABLE I
GRAMMAR CONSTRUCTION FOR abcabc

symbols I'g, which can be the empty set or no and Ag the
initial set of rules (can be empty or not). Sequitur starts with
a start rule with € as body, and iterates over the characters
of the input string. Each character is handled in two phases.
First, Sequitur adds the new character as a terminal symbol
at the end of the body of the start rule (line 4). Second, if it
is necessary (line 5), it applies one or more reduction steps
in order to ensure two properties on the grammar: digram
uniqueness (from line 6 to 15) and rule utility (from line 16
to 20).

1) Digram uniqueness: It states that a grammar should not
contain two non-overlapping occurrences of the same digram
in the grammar body.

Property 1 (Digram uniqueness). The digram uniqueness
property holds for G, noted Uniqueness(G), if for all ter-
minals A, B € T, symbols a,b,c,d € X UT, and strings
a,B,7,0 € (XUTL)*, the two following statements hold:

(A#BANA—=aabBAB—=ycedd)=ab#ced (1)
(A= aabfcd)= ab# cd. 2)

Statement (I) says that if G contains two rules A — aabf3
and B — ycdd with A # B, then ab is not equal to cd.
Statement says that if G contains a rule A — aabfcd~,
then ab is not equal to cd.

Sequitur ensures Property 1| as follows. If adding a symbol
(line 4) produces a non-overlapping repetition of a digram in
the grammar body, then the property does not hold anymore
(line 6). Sequitur restores the property either by creating a
new rule or by reusing an existing rule (lines 7-15). If the
repeated digram corresponds already to the body of an existing
rule, Sequitur replaces this digram with the corresponding
nonterminal (line 9), which represents the concerned rule.
Otherwise, it forms a new rule with the digram as body and
a new nonterminal as head, and replaces both occurrences of
the digram with this new nonterminal symbol (lines 11-14).

In the original version of Sequitur, such a parameter does not exist. We
present a parameterized form of Sequitur as it will be used by our extension
in the next section.

Table [I] details step-by-step the application of Sequitur on
the input string abcabce. For each step, this table indicates the
number of read symbols (2), the current grammar, the under-
taken action with the corresponding line(s) in the algorithm,
and the status of the two properties (digram uniqueness and
rule utility). On this example, after adding the symbol b to the
body of rule (S, abca) at step 5, the digram ab occurs twice,
and consequently the digram uniqueness property is violated.
Sequitur creates a new rule (A4, ab) with a new nonterminal A
as head, and the digram ab as body, to replace both digram
occurrences in the grammar with A, as in step 6.

2) Rule utility: It ensures that every rule (nonterminal)
except the start rule is used more than once in the grammar
body.

Property 2 (Rule utility). The rule utility property holds for
G, noted Utility(G) if:

vaer\s): (3 el is-ay) 22

(B,B)eA

Sequitur ensures the rule utility property as follows. If a
rule is referred to once (line 16), Sequitur eliminates it, and
replaces the occurrence of its head (nonterminal) with its body
(lines 17-20). Note that, this mechanism allows the formation
of rules whose body consists of more than two symbols.

On the example of Table I} after adding the next input
symbol ¢ at step 7, Sequitur introduces the new rule B — Ac
to ensure the digram uniqueness property in step 8. In the
resulting grammar, the nonterminal A occurs once in the
grammar body, precisely in the body of rule B — Ac. In this
case, in step 9, to restore the rule utility property, Sequitur
eliminates rule A — ab and replaces the occurrence of A in
the body of B — Ac with the digram ab.

Note that Sequitur terminates on all finite input strings.
Each input symbol is added one at a time and each addition
may trigger a finite sequence of reduction steps. Indeed, the
sequence of steps is finite because each reduction step, for
either property, ensures that the following quantity strictly
decreases (w.r.t. the lexicographical order on N?):

< > [iellafl|a; €}, yA|>,

(A,a)eA

that is, either the number of terminal occurrences in the
grammar (i.e., the sum of the number of terminal occurrences
in each rule body) decreases, or it stays the same but the
number of rules decreases. Sequitur compresses a string in
linear time [9]. Indeed, given an input string of length n, if
each addition may lead to up to O(y/n) reduction steps, the
overall algorithm execution does not take more than O(n)
reduction steps.

IV. MICROCONTROLLER TRACE COMPRESSION

We describe in this section the improved Sequitur algorithm.

A. Squeezing repetitions

1) Enhanced string (r-string) and grammar (r-grammar):
Given an alphabet Y, an r-string v is a sequence of symbols
with a number of consecutive repetitions. In other words, it is
a sequence of pairs (symbol, strictly positive integer). The set
of r-strings over 3 is X* = (X x N'\ {0})*. In an r-string v,
;1 stands for the symbol of the i-th element of) and ; o
stands for its number of repetitions. || denotes the number
of elements in the r-string . To lighten notations, repetition
numbers are placed in superscript after symbols and they are
omitted when equal to one. For instance, ab®d1? is a shorthand
for the sequence (a, 1)(b,5)(d, 10). The expansion of the r-
string 1 € X7, noted 1, is a string in ¥*, and is defined as
follows:

/‘Z = ”(/11,1 T ¢1,1 71)2,1 T 1/}2,1 o ¢|¢|,1 e ’@[J\w\,l .

repeated 1)1 2 times

1o o times ww |,2 times

Note that |¢/| indicates the number of pairs (symbol, number),
and not the number of symbols in the expansion (|1)|).

Definition 2 (r-grammar). An r-grammar G' is a 4-tuple
(3, T, 8, A’ where:
e X is a finite alphabet of terminal symbols,
o I' is a disjoint finite alphabet of nonterminal symbols,
e S €T is a start symbol, i.e., a particular nonterminal,
e and A’ CT x (XUT)* is a set of r-production rules,

such that the following properties are verified:

e for every nonterminal A, there is a unique r-string o such
that (A,) is in A/,

e there is a strict partial order over I, such that, for all
production rule (A,a) € A/, every nonterminal in «
precedes A.

An r-production rule (A,«) € A’ is noted A — «, where
the nonterminal A (resp. the r-string «) is called the head
(resp. the body) of the rule. The r-grammar body is {« | A :
(A, o) € A’} i.e., the set of the rules’ bodies. In the following,
we consider an r-grammar G’ = (X, T, S, A').

2) Enhanced compression ReSequitur: Given in Fig. [2|
ReSequitur is inspired from Sequitur [9]. Indeed, it ensures
that adapted versions of digram uniqueness and rule utility
properties hold on its output r-grammar:

Property 3 (Digram uniqueness). The digram uniqueness
property holds for G', noted RUniqueness(G'), if for all
terminals A, B € T, symbols a,b,c,d € ¥ UT, strictly
positive integers n,m, p, q € N\{0}, and r-strings o, 3,7, €
(X UT)%, the two following statements hold:

(A#BANA— aa™™ S AB— vPd?)) 3)
= a"b™ #£ Pd?
(A= aa™™ BcPdly) = a™b™ #£ Pdl. 4)

Statement states that if A’ contains two rules A —
aa™™ B and B — v Pd?6 with A # B, then a™b™ is not

equal to cPd? (thatis, a # cV b # dVn # pV m # q). State-
ment (4) states that if A’ contains arule A — aa™b™ B cPd?+y,
then a™b? is not equal to cPdq.

Property 4 (Rule utility). The rule utility property holds for
G’, noted RUtlity(G"), if:

VAeTl \ {S} :
Bia if Bia=A
> { T) > 2.
<<BJ5>EA/1'€[1.,|[3|] 0 ffin#A

Property M states that for each nonterminal A € T, if A is
not the start symbol S, it must be used at least twice in the
grammar body (taking account consecutive repetitions).

In addition, ReSequitur ensures another property stating that
any digram in an r-grammar body is composed of different
symbols.

Property 5 (No consecutive repetition). G’ has no consecutive
repetitions, which is noted RConsecutive(G'), if:

VYa,be XUT,Vn,m € N\ {0},Vo,8 € (XU ,VC e
(C,aad"d™B) € A" = a #b.

To ensure this property at each iteration of the outer loop,
ReSequitur merges every digram of the form a"a™ into a

single repeated symbol a™*™ (Fig. |2, lines .

B. Detecting and exploiting cycles with Cyclitur

Recall that the objective of our work is to compress cyclic
traces extracted from microcontrollers. The main characteristic
of the programs at the origin of these traces, is the active main
loop, which is often expressed using a while (1) statement.

The first step in our approach is cycle detection. A cycle
is a subsequence of the execution trace that represents one
execution of the main active loop of the embedded program.
Cycle detection relies on the localization of a special event
that represents the loop header, noted lh.

Definition 3 (Set of Cycles). For a string w, and a loop header
lh, the set of cycles in w using the loop header lh is defined
as:

Clw,th) ={{i,j) eN* |1 <i < j < |w
Aw; =lh
AG = |wl Vw = 1h)
AVEk € i+ 1..4] : wi # lh}.

C(w,lh) is a set of pairs of indexes, where each pair (7, j)
represents a subsequence (cycle) w; ;. For each cycle (i, j),
the subsequence wj. ; starts with the loop header I (except for
the first one if the trace does not start with the loop header),
contains at most one occurrence of the loop header [h, and
ends either with the symbol before the next occurrence of the
loop header [h or at the end of the sequence w.

Detecting cycles using the loop header event essentially
consists in dividing the trace into blocks, where each block
represents a specific cycle. ReSequitur is applied on each of

1 let S be a fresh nonterminal representing a rule
(S ¢ X uUly)

2 G+ (E,ToU{S},S, A U{(S,e)})

3 for i < 1 to |w| do

4 append (wi)1 to body of rule S

5 while ~RUniqueness(G) vV ~RUtility(G) V

- RConsecutive(G) do

6 if ~RConsecutive(G) then
let a, n, m be s.t. a"a™ is a r-digram in G
replace every occurrence of a"a™ in G
with @™ *t™

9 else if “RUniqueness(G) then

10 let § be a repeated r-digram in G

1 if 3(A,a) € A: oo =9 then

12 replace the other occurrence of § in G

with A

13 else

14 form new rule (D, d) where D ¢ (X UT)

15 replace both occurrences of § in G

with D

16 A+~ AU{(D,d)}

17 I+ T u{D}

18 end

19 else if ~RUtility(G) then

20 let (A,) € A be a rule used once

21 replace the occurrence of A with o in G

2 A+~ AN{(4 a)}

23 I« T~ {4}

24 end

25 end

26 end

27 return G
Fig. 2. Function ReSequitur(3, w, o, Ag)

w e
foreach (i, j) € C(w,lh) in increasing order do
(2,17, 8", A") < ReSequitur(X,w;. j,To, Ag)
Fo «— I
AO — A
w8
end
(27,17, 8", A" + ReSequitur(E,w', To, Ao)
return (X7 T S" A")

R -EE B Y L

Fig. 3. Function Cyclitur(X,w,T'y = @, Ag = &, 1h)

these block, to detect repetitions inside cycles (Fig. [3| lines 2—
7), while sharing the same set of rules. Applying ReSequitur
algorithm on the compression produced by the previous step
allow us to detect similar sequences of cycles in the trace
(Fig. [3 line 8).

V. IMPLEMENTATION AND EVALUATION

The first step in the evaluation of our trace-compression
approach is an experimental evaluation, which consists in
comparing grammars obtained by applying Sequitur and Cycli-
tur on various execution traces. The experimental evaluation
was made possible thanks to J-Cyclitur. The second step is
a qualitative evaluation, which evaluates the quality of the
produced compressions, and measures their capability to help
software engineers decide which parts they want to analyze in
detail.

A. J-Cyclitur

J-Cyclitur is a tool written in Java in 4,000 LOC that
implements both Sequitur and Cyclitur algorithms. It takes
as input an execution trace file. It extracts automatically
a string of symbols. For instance, given a microcontroller
execution trace, a symbol is a program counter. Then J-
Cyclitur compresses the string using Sequitur and Cyclitur
algorithms. Finally, it outputs a grammar, either as text or as
a Java object for programmatic use.

B. Metrics of experimental evaluation

In the following, we use a given string (trace) w, and the
output grammar (resp. r-grammar) generated with Sequitur
(resp. Cyclitur), noted G = (X, T, S, A).

1) Grammar size: The size of the grammar G is the sum of
the number of symbol occurrences in its body (both terminals
and nonterminals) and the number of its rules.

2) Compression ratio: Noted Comp(G), this metric is used
to compare the degree of compression of grammars generated
using Sequitur and Cyclitur.

Comp(G) = Size(G)
wl

3) Compressed cycle size: For a generated compression,
this third metric indicates how many symbols are analyzed in
the grammar to detect a particular cycle. This metric can also
be seen as the number of paths that the debugger engineer
shall follow in the grammar to find an entire cycle.

Note that the cycle detection step in Cyclitur ensures that
each cycle corresponds to a single symbol, then the com-
pressed cycle size is always one with Cyclitur.

C. Programs and traces

The traces used to evaluate our approach come from five
embedded programs, which are provided by STMicroelectron-
ics and EASii IC. For confidentiality reasons, programs are
not described. In the following we denote by P: the program
number 7.

Once at a time, each program is downloaded on a
STM32F107 EVAL-C microcontroller board and executed.
The trace produced by the execution is recovered using a Keil
Ulinkpro probe [12], and saved in CSV format. In the trace file,
for each instruction, we have its index, which is an ID, the time
when it was executed, its corresponding assembly instruction
and the program counter (PC). For our compression approach

we are only interested in the PCs. For each program, five
execution traces are produced.

D. Results

Table [II] contains the results of the experimental evaluation,
where each line represents a trace of a program. The two
columns (# Symbols) and (# Cycles) represent respectively
the number of symbol occurrences and the number of cy-
cles in a trace. For a grammar G generated by Sequitur,
Table [lI| contains its size (Size(G)), its compression ratio
(Comp(@)), and the average of the compressed cycle size
over cycles (AvgAC(QG)). For a grammar G’ generated by
Cyclitur, Table [lI| contains its size (Size(G')), and its com-
pression ratio (Comp(G’)). For Cyclitur, Table [[I] does not
contain AugAC(G’), which is the average of the compressed
cycle size in the grammar G’, because, by construction, the
compressed cycle size of any cycle in a Cyclitur-generated
grammar is always equal to one.

Fig. @] graphically summarizes these results. For both algo-
rithms (Sequitur in gray and Cyclitur in white), and for each
program, Fig.] displays the arithmetic average of the com-
pression ratios over the five collected traces of the program.

Note that the use of the other average measures gives
different values, but the same result: the difference between the
generated compressions using Sequitur and Cyclitur. In Fig.]
the arithmetic average is used to have a better illustration.
The compression ratio takes value between 0 and 1, where O
represents the best compression, and 1 the worst.

In Fig. Bl we compare for each program, the average
of compression computed using the grammars generated by
Sequitur and the grammars generated by Cyclitur. For exam-
ple, for program P1, we observe that our approach produces
better compression than Sequitur. The sizes of grammars
generated by Sequitur for the execution traces of P1 vary from
1,181 up to 2,631; they contain 214-387 terminals, 728-1,689
nonterminals, and 239-1,689 rules. The sizes of original traces
vary between 1,048,571 and 1,048,576, with 31,562-53,821
cycles. Therefore, the ratios of compression vary between
0.0011 and 0.0025. Cyclitur produces grammars whose sizes
vary from 1,139 to 2,044 with 213-385 terminals, 687-1,237
nonterminals, and 239-423 rules. The compression ratios vary
between 0.0010 and 0.0019. Also, when Sequitur-generated
grammars require 5-13 symbols (AvgAC(G)) to represent a
cycle, Cyclitur ensures each cycle can be represented as a
unique symbol. In Fig. 4, we note that for all the programs
used in the experimental evaluation, the use of Cyclitur
generates a better compression than Sequitur. The ratios of
compression are better from 15% to 30%.

E. Cyclitur and network traces

We evaluate our trace-compression approach on four ad-
ditional traces obtained from network simulations. The con-
sidered network is a Multi-Channel Multi-Interface Wireless
Mesh Network (WMN) with routers based on the IEEE 802.11
technology [15)]. The loop header used to detect cycles and

TABLE I
EVALUATION RESULTS

Program Trace Sequitur Cyclitur
Symbols | # Cycles | Size(G) Comp(G) Avg(AC) Size(G") Comp(G)
Pl Trace 1 1048575 53821 2631 0.002509120 12.004738 2044 0.001949312
Trace 2 1048576 51574 1884 0.001796722 9.207381 1455 0.001387596
Trace 3 1048576 50482 1814 0.001729965 5.076247 1798 0.001714706
Trace 4 1048571 53819 1880 0.001792916 13.413709 1510 0.001440055
Trace 5 1048574 31562 1181 0.001126292 7.039004 1139 0.001086237
P2 Trace 1 1048575 27542 22012 0.020992299 4.867071 17945 0.017113702
Trace 2 1048575 10621 20317 0.019375820 4.411111 17728 0.016906754
Trace 3 1048575 26043 19662 0.018751162 3.932647 15190 0.014486327
Trace 4 1048576 1038 20674 0.019716263 7.436837 17002 0.016214371
Trace 5 1048574 32515 20116 0.019184149 6.086793 15888 0.015152006
P3 Trace 1 1048572 49208 1918 0.001829154 8.897677 1331 0.001269345
Trace 2 1048571 49207 1830 0.001745232 4.697557 1397 0.001332289
Trace 3 1048573 49205 1813 0.001729016 11.443277 1463 0.001395230
Trace 4 1048576 49207 1961 0.001870155 4.955595 1409 0.001343727
Trace 5 1048576 49209 1842 0.001756668 9.495285 1741 0.001660347
P4 Trace 1 1048567 47029 1846 0.001760498 6.724356 1498 0.001428616
Trace 2 1048571 53854 2250 0.002145777 8.729226 1630 0.001554497
Trace 3 1048574 47031 2032 0.001937870 9.841527 1458 0.001390460
Trace 4 1048575 53860 1808 0.001724245 5.849607 1494 0.001424791
Trace 5 1048575 53866 1947 0.001856806 8.279625 1716 0.001636507
P5 Trace 1 1048573 64527 309 0.000294686 12.249899 139 0.000132561
Trace 2 1048576 64527 304 0.000289917 2.810030 142 0.000135422
Trace 3 1048570 52782 1641 0.001564989 9.285046 1334 0.001272209
Trace 4 1048571 64526 317 0.000302316 2.594638 144 0.000137330
Trace 5 1048576 64528 298 0.000284195 5.250004 146 0.000139236
W Sequitur O Cyclitur M Sequitur O Cyclitur
0,02 0,003
0,0025
0,015
2 © 0,002
& 5 —
s °== 1
.g 0,01 ‘% 0,0015
s g 1
£ £ —
© S oo
0,005 1
0,0005]
o 1] .j .j -_—— —
P1 P2 P3 P4 PS 0 N X s .
Program Trace

Fig. 4. Compared average compression ratios for each program

to divide generated traces into blocks is a specific event that
refers to the emission a request from client to server.

The first trace consists of 6,011,850 events spread over
9,574 cycles. The ratio of compression using Sequitur is
0.0027% for a generated grammar whose size is 16,531, and
which contains 744 terminals, 12,375 nonterminals and 3,412
rules. The size of the grammar generated using Cyclitur is
16,057; it contains 373 terminals, 13,884 nonterminals and
4182 rules. The compression ratio for Cyclitur grammar is
0.0026%.

The second trace consists of 8,040,942 events spread over
9,574 cycles. Sequitur generates a grammar whose size is
18,639, and which contains 716 terminals, 14,042 nonter-
minals and 3,881 rules. The size of the grammar generated

Fig. 5. Compared compression ratios for each WMN trace

using Cyclitur is 18,439; it contains 373 terminals, 13,884
nonterminals and 4,182 rules. The use of Sequitur and Cyclitur
on the second trace gives respectively 0.00023% and 0.0022%
as compression ratio. Cyclitur generates a grammar that con-
tains more rules than the grammar generated by Sequitur,
although the Cyclitur compression is easier to understand and
to analyze, because it is more compact and it facilitates cycle
detection.

The third WMN trace contains 10,312,955 events spread
over 33,834 cycles. Sequitur generates a grammar that con-
tains 605 terminals, 12,584 nonterminals, and 3,501 rules.
The compression ratio for the Sequitur grammar is 0.0016%.
Cyclitur generates a grammar that contains 272 terminals,
7,783 nonterminals, and 2,090 rules. The compression ratio

for the Cyclitur grammar is 0.0009%.

The last WMN trace contains 13,883,977 events spread
over 2,797 cycles. The ratio of compression using Sequitur
is 0.0020% for a generated grammar whose size is 28,181
and which contains 661 terminals, 21,575 nonterminals and
5,945 rules. The size of the grammar generated using Cyclitur
is 26,468; it contains 349 terminals, 20,108 nonterminals and
6,011 rules. The compression ratio for Cyclitur grammar is
0.0019%.

The previous results show that Cyclitur can be used likewise
to compress trace collected from networks. In Fig. 5] we
note that for all network traces used in the experimental
evaluation, the use of Cyclitur generates a better compression
than Sequitur. Note that the compression ratio takes value
between 0 and 1, where O represents the best compression,
and 1 the worst.

F. Quality evaluation

We performed a study to evaluate the quality of the pro-
duced compressions, and to measure their capability to help
software engineers decide which parts they want to analyze in
detail.

1) Subjects and the object of study: To evaluate trace
compressions, we made an online evaluation using:

o An execution trace that contains 15,391 linesﬂ

o The Sequitur-generated compression”| (123 lines),

o The Cyclitur-generated compression| (113 lines).

The execution trace was obtained by running on a STM32
evaluation board, a program that simply consists in counting
the number of iterations of the main loop. If the iteration
number is divisible by two, the program prints a specific text
on the LCD screen; otherwise it turns on some LEDs for two
seconds.

Without providing program source code, we asked 20 soft-
ware engineers to evaluate the capability of the compressions
to assist in the understanding of system behavior. Assisting
in the understanding of system behavior consists in helping
decide which cycles in the trace should be analyzed in detail.
Among the software engineers that participated to this quality
evaluation, 20% analyze execution traces never or rarely, 55%
analyze execution traces from occasionally to often, and 25%
analyze execution traces from frequently to always.

2) The evaluation of compressions: To measure the subjec-
tive quality of the trace compression techniques, we designed
an online opinion poll, which involves the active participation
of human judges. Participants rate the compressions generated
using Sequitur and Cyclitur based on the help provided to
decide what parts of trace they need to analyze in detail.

In the first phase, the software engineers were presented
with the generated trace and asked to answer the question
“What do you think about the trace?”. For the question, the
responders had to choose one or more choices among the
following:

2 Available online at http://io32.forge.imag.fr/formulaire/Trace.txt
3 Available online at http://io32.forge.imag.fr/formulaire/Sequitur.txt
4Available online at http://io32.forge.imag.fr/formulaire/Cyclitur.txt

o “Huge amount of data”,
o “Incomprehensible data”,
e “Comprehensible data”.

The size of the provided trace represents only around 2% of
the size of one of our benchmark trace, however, 60% of the
responders agreed that the trace file contains a huge amount of
data. Concerning the trace comprehension, while 30% found
the trace comprehensible, 55% found it incomprehensible.

In the second phase, the software engineers were presented
with the compression generated using Sequitur and asked to
answer the question “Does the compression help you decide
which parts you want to analyze in detail?”. The software
engineers answered by “yes” or “no”. The results show that
65% answered by no, while 35% found that the Sequitur
compression helps to decide which parts to analyze in detail.

The next phase consists in evaluating Cyclitur compression.
The developers were presented with the compression generated
using Cyclitur and asked to answer two questions. First ques-
tion was “Do you notice a specific cycle in the compression?”.
The developers answered “yes” or “no”. By analyzing the
results we observe that 60% of the software engineers found
that the Cyclitur compression helps to identify which of cycles
should be analyzed in detail. According to the suggestions of
the software developers that answered the question by “no”,
the main reason behind their negative answer choice was the
absence of a visualization.

The second question was “With respect to the Sequitur
compression, do you think that Cyclitur compression is more
helpful?’. The software engineers had five options to choose
from to answer the previous question, where each option being
assigned a score: not helpful (assigned a score of 1), slightly
helpful (score of 2), moderately helpful (assigned a score of
3), very helpful (assigned a score of 4), extremely helpful
(assigned a score of 5).

We observe that 100% of software engineers found that the
Cyclitur compression is more helpful in analyzing an execution
trace than the Sequitur compression. In more details, 20%
had found that the Cyclitur compression is extremely helpful
comparing to the Sequitur compression, and 25% found it very
helpful.

In order to understand how developers performed the eval-
uation, we asked them to answer one follow-up question,
which is: “Using Cyclitur compression, what did help you
decide which cycle(s) should be analyzed in detail”’. The
cycle detection and the position of cycles in the Cyclitur
compression were used up to 57% to decide which cycles the
software engineers need to analyze. The number of repetitions
of cycles in the compression was used 89% to decide which
cycles to analyze.

VI. RELATED WORK

Compressing traces of microcontrollers with the objective
of analyzing them remains a challenge. In other areas, partic-
ularly in object oriented context, there are numerous studies
concerning reduction and compression of execution traces.

http://io32.forge.imag.fr/formulaire/Trace.txt
http://io32.forge.imag.fr/formulaire/Sequitur.txt
http://io32.forge.imag.fr/formulaire/Cyclitur.txt

50%

45%
40%
35%
[}
+ 30%
<
?:o 25%
]
o 20%
>
15%
10%
0%
not helpful slightly moderately Very helpful Extremely
helpful helpful helpful
Comprehession assistance level
Fig. 6. The Understanding assistance level of Cyclitur compression

Hamou-Lhadj and Lethbridge [7] use an acyclic oriented
graph representing method calls to compress traces. A rule-
based approach using method calls is proposed in [16], [17],
which aims to build a compression by using the construction
of trees. It is possible to summarize large execution traces
using finite automata like in [18]]. In addition to their trace
compression, in [14] Hamou-Lhadj and Lethbridge, propose
the deletion of implementation and useless details to ease the
analysis of execution traces. These object oriented approaches
are not suitable for our purpose for multiple reasons. First, they
discard the order of events, which is paramount to understand
a program. Second, they use input/output data. In our context,
such information is rarely available, and raises important stor-
age problems. Third, these approaches reason about method
calls. In optimized microcontroller code, function calls alone
are often inadequate to understand the program, since the core
logic of a program is sometimes coded in a single function.

General data compression methods have been used for
program traces, for example, Gzip [19], or VPC4 [§]. How-
ever, such compression usually generates a result that is not
understandable by the engineer. The use of these techniques
may imply loss of reference points, which are cycles in our
approach. We think that cycles revealed in the process of
compression may assist automatic trace analysis, for example
using cycle matching [20]].

An approach proposed by James R. Larus in [13] captures
the program execution using trace recording, and represents
a dynamic executed control flow of a program. To compress
traces, the author uses Sequitur to find inherent regularities
(e.g., repeated code). The DAG representation of grammar
produced by Sequitur is called Whole-Program Path (WPP).
This approach is interesting; however, its main motivation is
the detection of hot subpaths, which are short sequences of
acyclic paths that are costly. Our work consists in compressing
traces by detecting and exploiting cycles. It allows us to reach
better compression ratios than Sequitur. Also, our approach

keeps cycles as reference points while the WWP approach
does not take cycles into account. That is why, the WWP
approach is not relevant in our work context.

Similarly to the approach of James R. Larus, we rely
on Sequitur, a grammar-based compression algorithm. Such
algorithms are the objects of active research in information
theory (cf. [21] for a survey). In particular, several exten-
sions of Sequitur aimed at obtaining better compressions by
producing smaller grammars. For instance, Yang and Kiefer
proposed a generalization of Sequitur to n-grams (rather
than digram) [22]. This change ultimately leads to smaller
grammars. However using this algorithm comes at a price: the
algorithm does not share the same time and space complexity
as Sequitur, and as a result, is not usable on huge program
traces. On the contrary, Cyclitur keeps the same complexity
as the original Sequitur algorithm.

VII. CONCLUSION AND PERSPECTIVES

In the microcontroller context, the new microprocessors
ARM Cortex-Mx [[L1], enable recording the component behav-
ior and save it as an execution trace file. Analyzing execution
trace may help in the understanding and debugging tasks.
However, even for a short execution time, the generated
trace contains a huge amount of data, making the system
comprehension task difficult and tedious. It is important to
provide to the engineer in charge of debugging an overview
of the execution trace.

In this article we propose an approach that aims to provide
a compression of trace. The compression process is based
on a grammar-based compression using our improvement of
Sequitur [9], named Cyclitur. Our approach starts by dividing
a trace into cycles, where each cycle is an execution of the
active main loop. The second step consists in discovering
and compressing similarities inside cycles. The detection and
compression of repetitions and regularities in terms of cycles
is the third and last step of our approach.

Our approach is evaluated, first quantitatively to compare
its compression rate to the existing Sequitur algorithm; sec-
ond qualitatively to determine if such compression could
be useful to software engineers. The quantitative evaluation
shows that our approach generates an equivalent or better
compression than Sequitur on benchmark execution traces. On
microcontroller execution traces, Cyclitur compression ratios
were better than Sequitur compression ratios from 15% to
25%. The quality survey points out three important facts.
First, software engineers usually find that Cyclitur-generated
trace compressions are easier to analyze than their Sequitur-
generated counterparts. Second, Cyclitur may help in identify-
ing and locating important details in an execution trace. Third,
our survey highlights the need of a graphical visualization for
software engineers to analyze such a trace compression.

As a future work we intend to facilitate the understanding
of the compression through visualization. We also intend to
help in diagnostic by adapting dynamic validation and data
mining techniques [23], for compressed traces, to help in fault
localization.

ACKNOWLEDGMENT

This work has been funded by the French-government
Single Inter-Ministry Fund (FUI) through the 1032 project
(Instrumentation and Tools for 32-bit Microcontrollers). The
authors would like to thank STMicroelectronics, AIM and
ESAii IC for their help.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

A. Rohani and H. Zarandi, “An analysis of fault effects and propagations
in AVR microcontroller ATmegal03(L),” in International Conference on
Availability, Reliability and Security (ARES), Mar. 2009, pp. 166—172.
G. Shamnur and R. Berigei, “XStatic: A simulation based ESD ver-
ification and debug environment,” in 9th International Symposium on
Quality Electronic Design (ISQED), Mar. 2008, pp. 441-444.

D. Chatterjee, C. McCarter, and V. Bertacco, “Simulation-based signal
selection for state restoration in silicon debug,” in IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), Nov. 2011, pp.
595-601.

ARM. Embedded trace macrocells (ETM). [Online]. Available: http:
/Iwww.arm.com/products/system-ip/debug-trace/trace- macrocells-etm/
H. F. Ko and N. Nicolici, “Automated trace signals identification and
state restoration for improving observability in post-silicon validation,”
in Design, Automation and Test in Europe (DATE), Mar. 2008, pp. 1298—
1303.

K. Basu and P. Mishra, “Efficient trace signal selection for post silicon
validation and debug,” in 24th International Conference on VLSI Design,
Jan. 2011, pp. 352-357.

A. Hamou-Lhadj and T. C. Lethbridge, “Compression techniques to
simplify the analysis of large execution traces,” in 10th International
Workshop on Program Comprehension (IWPC). IEEE Computer
Society, 2002, pp. 159-.

M. Burtscher, I. Ganusov, S. Jackson, J. Ke, P. Ratanaworabhan, and
N. Sam, “The VPC trace-compression algorithms,” IEEE Transactions
on Computers, vol. 54, no. 11, pp. 1329-1344, Nov. 2005.

C. G. Nevill-Manning and I. H. Witten, “Identifying hierarchical
structure in sequences: A linear-time algorithm,” Journal of Artificial
Intellgence Research (JAIR), vol. 7, pp. 67-82, 1997.

J. S. Parab, V. G. Shelake, R. K. Kamat, and G. Naik, “Exploring
C for microcontrollers: A hands on approach,” in ACM SIGPLAN
conference on Programming Language Design and Implementation
(PLDI). Springer, 2007, pp. 1-18.

ARM. Cortex-M series. [Online]. Available: http://www.arm.com/
products/processors/cortex-m/|

K. by ARM. ULINKpro. [Online]. Available: http://www.keil.com/
ulinkpro/

J. R. Larus, “Whole program paths,” in ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI). ACM,
1999, pp. 259-269.

A. Hamou-Lhadj and T. C. Lethbridge, “Summarizing the content
of large traces to facilitate the understanding of the behaviour of a
software system,” in /4th IEEE International Conference on Program
Comprehension (ICPC). 1EEE Computer Society, 2006, pp. 181-190.
C. De Oliveira, F. Theoleyre, and A. Duda, “Connectivity in multi-
channel multi-interface wireless mesh networks,” in 7th International
Wireless Communications and Mobile Computing Conference (IWCMC),
Jul. 2011, pp. 35-40.

K. Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, and K. Inoue, “Ex-
tracting sequence diagram from execution trace of Java program,” in 8th
International Workshop on Principles of Software Evolution (IWPSE).
IEEE Computer Society, 2005, pp. 148-154.

A. Hamou-Lhadj, “Effective exploration and visualization of large
execution traces,” in 4th IEEE International Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT), Jun. 2007, pp.
152-153.

M. Heizmann, J. Hoenicke, and A. Podelski, “Refinement of trace
abstraction,” in 16th International Symposium on Static Analysis (SAS).
Springer-Verlag, 2009, pp. 69-85.

J.-L. Gailly and M. Adler. Gzip. [Online]. Available: http://www.gzip.
org/

J. Aoe, Computer Algorithms: String Pattern Matching Strategie. 1EEE
Computer Society Press, 1994.

[21]

[22]

(23]

M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sa-
hai, and A. Shelat, “The smallest grammar problem,” I[EEE Transactions
on Information Theory, vol. 51, no. 7, pp. 2554-2576, Jul. 2005.
E.-H. Yang and J. C. Kieffer, “Efficient universal lossless data com-
pression algorithms based on a greedy sequential grammar transform—
Part one: Without context models,” IEEE Transactions on Information
Theory, vol. 46, no. 3, pp. 755-777, May 2000.

U. Fayyad, G. Piatetsky-shapiro, and P. Smyth, “From data mining to
knowledge discovery in databases,” AI Magazine, vol. 17, pp. 37-54,
1996.

http://www.arm.com/products/system-ip/debug-trace/trace-macrocells-etm/
http://www.arm.com/products/system-ip/debug-trace/trace-macrocells-etm/
http://www.arm.com/products/processors/cortex-m/
http://www.arm.com/products/processors/cortex-m/
http://www.keil.com/ulinkpro/
http://www.keil.com/ulinkpro/
http://www.gzip.org/
http://www.gzip.org/

http://rr.liglab.ff

	001cover
	02
	WCRE2012
	Introduction
	Microcontroller application context
	A formalization of Sequitur
	Sequitur Grammars
	Algorithm
	Digram uniqueness
	Rule utility

	Microcontroller Trace Compression
	Squeezing repetitions
	Enhanced string (r-string) and grammar (r-grammar)
	Enhanced compression ReSequitur

	Detecting and exploiting cycles with Cyclitur

	Implementation and Evaluation
	J-Cyclitur
	Metrics of experimental evaluation
	Grammar size
	Compression ratio
	Compressed cycle size

	Programs and traces
	Results
	Cyclitur and network traces
	Quality evaluation
	Subjects and the object of study
	The evaluation of compressions

	Related Work
	Conclusion and Perspectives
	References

	04

