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Abstract—MapReduce is a promising programming model
for distributed data processing. Extensive research has been
conducted on the scalability of MapReduce, and several systems
have been proposed in the literature, ranging from job schedul-
ing to data placement and replication. However, realistic bench-
marks are still missing to analyze and compare the effectiveness
of these proposals. To date, most MapReduce techniques have
been evaluated using microbenchmarks in an overly simplified
setting, which may not be representative of real-world applica-
tions. This paper presents MRBS, a comprehensive benchmark
suite for evaluating the performance of MapReduce systems.
MRBS includes five benchmarks covering several application
domains and a wide range of execution scenarios such as
data-intensive vs. compute-intensive applications, or batch
applications vs. online interactive applications. MRBS allows to
characterize application workload and dataload, and produces
extensive high-level and low-level performance statistics. We
illustrate the use of MRBS with Hadoop clusters running on
Amazon EC2.

Keywords-Benchmark; Performance; MapReduce; Hadoop;
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I. INTRODUCTION

MapReduce has become a popular programming model
and runtime environment for developing and executing
distributed data-intensive and compute-intensive applica-
tions [1]. It offers developers a means to transparently han-
dle data partitioning, replication, task scheduling and fault
tolerance on a cluster of commodity computers. MapReduce
allows a wide range of applications such as log analysis, data
mining, web search engines, scientific computing [2], bioin-
formatics [3]], decision support and business intelligence [4].

There has been a large amount of work on MapReduce
towards improving its performance and scalability. Several
efforts have explored task scheduling policies in MapRe-
duce [5], [6], [7], cost-based optimization techniques [8]],
resource provisioning [9], replication and partitioning poli-
cies [10], [[L1]]. There has also been a considerable interest
in extending MapReduce with techniques from database sys-
tems [12], [13]], [[14]], [15].However, there has been very little
in the way of empiric evaluation of the performance of these
systems. Most evaluations have relied on microbenchmarks
based on simple MapReduce programs. While microbench-
marks may be useful in targeting specific system features,
they are not representative of full distributed applications,
and they do not provide multi-user realistic workloads. Thus,
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for a benchmark suite to enable a thorough analysis of
MapReduce systems, it must provide the following. First, it
must enable the empirical evaluation of the performance of
MapReduce systems. This will provide a means to analyze
the effectiveness of scalability , a key feature of MapReduce.
Furthermore, with the advent of MapReduce-enabled cloud
environments and the pay-as-you-go model, a benchmark
suite must allow the evaluation of the costs of MapReduce
systems in cloud environments. Second, it must cover a
variety of application domains and workload characteristics,
ranging from compute-oriented to data-oriented applications,
batch applications to online real-time applications. Indeed,
while MapReduce frameworks were originally limited to
offline batch applications, recent works are exploring the
extension of MapReduce beyond batch processing [16],
[17)]. Thus, a benchmark suite must consider different ex-
ecution modes. Moreover, in order to stress MapReduce
performance, the benchmark suite must enable different
workload injection profiles and concurrency levels. Finally,
the benchmark suite must be portable and easy to use on a
wide range of platforms and cloud infrastructures.

More specifically, the contributions of the paper are as
follows:

o The paper presents MapReduce Benchmark (MRBS),
a comprehensive benchmark suite for evaluating the
performance of MapReduce systems. MRBS covers five
application domains: recommendation systems, busi-
ness intelligence and decision support systems, bioin-
formatics, text processing, and data mining. MRBS pro-
vides a total of 32 different request types implemented
as MapReduce programs, and 26 sets of configurations
and input data. The workload profile can be set by the
user of MRBS to represent different scenarios.

o The paper provides performance characterizations of
MRBS benchmarks through extensive experimental
evaluations. It provides measures in the form of request
response time, throughput, and cost. It also describes
the benchmarks data access and processing patterns,
and provides low-level MapReduce statistics such as the
throughput of MapReduce jobs and tasks, the through-
put of reads and writes.

o The paper illustrates the use of MRBS with Hadoop



MapReduce clusters running on Amazon EC2.It also
presents two case studies of MRBS to investigate the
scalability of Hadoop MapReduce.

MRBS prototype currently consists of 10 Klines of Java
source code. MRBS is easy to use, and allows automatic
deployment of experiments to cloud infrastructures. It does
not depend on any particular infrastructure and can run on
different private or public clouds, such as Amazon EC2.
Integrating a new cloud infrastructure into MRBS requires
only few lines of code (approximately 350 lines). MRBS is
available as a software framework to help researchers and
practitioners to better analyze and evaluate the performance
and scalability of MapReduce systems in different settings
and applications domains.

The remainder of the paper is organized as follows.
Section [[I| describes the background on MapReduce. Sec-
tions describe the MRBS benchmark suite, its architec-
ture and design principles. Section |VI| presents experimental
results, and Section discusses use cases of MRBS.
Section [VIII reviews the related work, and Section [[X] draws
our conclusions.

II. SYSTEM AND PROGRAMMING MODEL

MapReduce is a programming model and a software
framework introduced by Google in 2004 to support dis-
tributed computing and large data processing on clusters
of commodity machines [[1]. They are achieved by auto-
matic task scheduling in MapReduce clusters, automatic data
placement, partitioning and replication, and automatic failure
detection and task re-execution. MapReduce successfully
supports a wide range of applications such as image analyt-
ics, next-generation sequencing, recommendation systems,
search engines, social networks, business intelligence, and
log analysis.

MapReduce is a functional programming model that pro-
vides a simple means to write programs that process large
input data sets. Programmers write only two main functions:
a map function and a reduce function, and the MapReduce
framework automatically handles data and computation dis-
tribution in a cluster. A MapReduce job, i.e. an instance
of a running MapReduce program, has several phases; each
phase consists of multiple fasks scheduled by the MapRe-
duce framework to run in parallel on cluster nodes. First,
input data are divided into splits, one split is assigned to
each map task. During the mapping phase, tasks execute
a map function to process the assigned splits and generate
intermediate output data. Intermediate outputs are grouped
into distinct subsets called partitions; these partitions are
used as inputs of reduce tasks. Then, the reducing phase runs
tasks that execute a reduce function to process intermediate
data and produce output data.

There are many implementations of MapReduce among
which the popular open-source Hadoop framework [18].

Hadoop is also available in public clouds such as Ama-
zon EC2 [[19], Google App Engine [20] or Open Cirrus [21].
A Hadoop cluster consists of a master node and slave nodes.
Users (i.e. clients) of a Hadoop cluster submit MapReduce
jobs to the master node which hosts the JobTracker daemon
that is responsible of scheduling the jobs. By default, jobs
are scheduled in FIFO mode and each job uses the whole
cluster until the job completes. However, other multi-user
job scheduling approaches are also available in Hadoop to
allow jobs to run concurrently on the same cluster. This is the
case of the fair scheduler which assigns every job a fair share
of the cluster capacity over time. Job scheduling policy can
be set in mapred.jobtracker.taskScheduler Hadoop property.
Moreover, each slave node hosts a TaskTracker daemon that
periodically communicates with the master node to indicate
whether the slave is ready to run new tasks. If it is, the
master schedules appropriate tasks on the slave.

Hadoop framework also provides a distributed filesystem
(HDFS) that stores data across cluster nodes [22]]. HDFS
architecture consists of a NameNode and DataNodes. The
NameNode daemon runs on the master node and is respon-
sible of managing the filesystem namespace and regulating
access to files. A DataNodes daemon runs on a slave node
and is responsible of managing storage attached to that node.
HDFS is thus a means to store input, intermediate and ouput
data of Hadoop MapReduce jobs.

III. DESIGN PHILOSOPHY

The motivation of this work is to come up with a com-
prehensive benchmark suite for MapReduce systems. More
precisely, the objectives of the MRBS Benchmark suite are
as follows:

1) Multi-criteria analysis. MRBS aims to measure
and analyze multiple aspects of the performance of
MapReduce systems. In particular, we consider sev-
eral measurement metrics such as client request la-
tency, throughput, and cost. We also consider low-level
MapReduce metrics, such as size of read/written data,
throughput of MapReduce jobs and tasks, etc.

2) Diversity. MRBS covers a variety of application do-
mains and programs with a wide range of MapRe-
duce characteristics. This includes data-oriented appli-
cations vs. compute-oriented applications. Furthermore,
whereas MapReduce was originally used for long run-
ning batch jobs, another use case has emerged where
a MapReduce cluster is shared between multiple users
running interactive requests over a common data set.
Therefore, MRBS considers batch applications as well
as interactive applications. Moreover, MRBS allows to
characterize different aspects of application load such
as the workload and the dataload. Roughly speaking,
the workload is characterized by the number of clients
(i.e. users) sharing a MapReduce cluster and the types
of client requests (i.e. MapReduce programs). And the



dataload characterizes the size of MapReduce input
data.

3) Usability. MRBS is easy to use, configure and deploy
on a MapReduce cluster. It is independent from any
infrastructure and can easily run on different public
clouds and private clouds. MRBS provides results
which can be readily interpreted in the form of moni-
tored statistics and automatically generated charts.

IV. SYSTEM ARCHITECTURE

The architecture of the MRBS framework is described
in Figure [I] It consists of four main elements: the set of
benchmarks, the cluster configuration component, the load
injector, and the statistics monitoring component. These
elements are presented in the following.

MRBS
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- it statistics
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Figure 1. MRBS architecture

A. Benchmark Suite

Conceptually, a benchmark in MRBS implements a ser-
vice that provides different types of operations, which are
requested by clients. The benchmark service is implemented
as a set of MapReduce programs running on a cluster, and
clients are implemented as external entities that remotely
request the service. Depending on the complexity of a
client request, the request may consist of one or multiple
successive MapReduce jobs. A benchmark has two execution
modes: interactive mode or batch mode. In interactive mode,
a client interacts with the service in a closed loop where
he/she requests an operation, waits for the request to be
processed, receives a response, waits a think-time, before
requesting another operation. In batch mode, the client and
benchmark interactions are modeled as an open loop.

A benchmark run has three successive phases: a warm-
up phase, a run-time phase, and a slow-down phase, which
length may be chosen by the end-user of the benchmark. The
end-user may also choose the number of times a benchmark
is run, to produce average statistics.

MRBS benchmark suite consists of five benchmarks
covering various application domains such as recommen-
dation systems, business intelligence, bioinformatics, text
processing, and data mining. The user can choose the actual
benchmark. The benchmarks and the types of operations
they provide are detailed in Section [V]

B. Cluster Configuration

MRBS cluster configuration component is responsible of
setting up a cluster on which the benchmark will run. The in-
frastructure hosting the cluster and the size of the cluster are
configuration parameters of MRBS and can be given differ-
ent values. MRBS acquires on-demand resources provided
by cloud computing infrastructures such as private clouds, or
Amazon EC2 public cloud [23]], and automatically releases
the resources when the benchmark terminates. We expect
to provide MRBS versions for other cloud infrastructures
such as OpenStack open source cloud infrastructure [24]].
Once the cluster is set up, the MapReduce framework and
its underlying distributed file system are started. The current
implementation of MRBS uses the popular Apache Hadoop
MapReduce framework and HDFS distributed file system.

C. Load Injection

Once the MapReduce cluster is set up, it is ready to run
MapReduce jobs following a given load. Interestingly, our
benchmark framework considers different aspects of load:
dataload and workload. This allows an MRBS end-user to
easily define different scenarios for a target benchmark,
and to stress different the performance and scalability of
MapReduce systems.

The dataload is characterized by the size and nature of
data sets used as inputs for a benchmark. Obviously, the
nature and format of data depend on the actual benchmark
and its associated MapReduce programs. For instance, the
MRBS movie recommendation system benchmark takes
input data consisting of users, movies and ratings users give
to movies. Whereas the bioinformatics benchmark uses input
data in the form of genomes for DNA sequencing.

The workload of a benchmark is first characterized by
the number of concurrent clients. It is also characterized by
client request distribution, that is the relative frequencies of
different request types. Request distribution may be defined
using a state-transition matrix that gives the probability
of transitioning from one request type to another. Request
transitions may also follow other distribution laws such as
a random distribution.

Finally, once a workload and a dataload are defined,
MRBS injects that load into the MapReduce cluster. It first



uploads input data in the MapReduce distributed file system.
This is done once, at the beginning of the benchmark, and
the data are then shared by all client requests. It then creates
as many threads as concurrent clients there are. Thread
clients will remotely send requests to the master node of
the MapReduce cluster which schedules MapReduce jobs in
the cluster. If parameters are associated with client requests,
their values are randomly generated.

D. Using MRBS

MRBS comes with a configuration file that involves
several parameters among which the following: the actual
benchmark to use, the length of the benchmark warm-up
phase, runtime phase, and slow-down phase, the size of the
benchmark input data set, the size of the MapReduce cluster,
the cloud infrastructure that will host the cluster, in addition
to workload characteristics described in the previous section
(e.g. number of concurrent clients , etc.). To keep the use
of MRBS simple, these parameters have default values that
may be adjusted by MRBS user.

MRBS produces various runtime performance statistics.
These include client request response time, throughput, and
financial cost. Statistics are provided in the form of average
values, as well as detailed values for each client request type.
MRBS also provides low-level MapReduce statistics related
to the number, length of MapReduce jobs, map tasks, reduce
tasks, the size of data read from or written to the distributed
file system, etc. These low-level statistics are built using
Hadoop counters. Optionally, MRBS can generate charts
plotting continuous-time results. It can also perform multiple
runs of the same benchmark configuration in order to report
average statistics.

V. BENCHMARK SUITE

Table [[] briefly describes MRBS benchmark suite which
covers five application domains. The upper part of the table
shows real-world applications, and the lower part of the
table represent collections of diverse MapReduce programs.
The benchmark suite provides a total of 32 different types
of client requests implemented as MapReduce programs. It
allows 26 different combinations of execution modes and
input data. Workload is another configuration parameter that
can be set by the user of MRBS to represent different
scenarios.

The benchmarks exhibit different behaviors in terms of
computation pattern and data access pattern: the recom-
mendation system is a compute-intensive benchmark, the
business intelligence system is a data-intensive benchmark,
and the other benchmarks are relatively less compute/data-
intensive. This is shown in Figure [] that compares the dif-
ferent benchmarks (note the logarithmic scale). Figure [2(a)]
gives the average size of data accessed per client request,
and Figure gives the ratio of request processing time
to the size of accessed data. Moreover, Figure [3] shows that

MRBS benchmarks present different MapReduce character-
istics in terms of the average number of MapReduce jobs
and tasks per client request. In the following, we detail
MRBS benchmarks.

A. Recommendation System

Recommendation systems are widely used in e-commerce
sites such as Amazon.com which, based on purchases and
site activity, recommends books likely to be of interest.
MRBS implements an online movie recommender system.
It builds upon a set of movies, a set of users, and a set of
ratings and reviews users give for movies to indicate whether
and how much they liked or disliked the movies. These data
have been collected from a real movie recommendation web
site [25]. The benchmark provides four types of operations.
First, a user may ask for all ratings and reviews given
by other users for a given movie, to see whether people
liked or disliked the movie. The recommendation system
also allows to browse all ratings and reviews given by a
user. Furthermore, a user may ask the recommender system
to provide him/her the top ten recommendations, these are
the movies this user would like the most. Another type of
operation a user may perform is to ask the recommendation
system how it would recommend him/her a given movie; this
would indicate to the user whether and how much he/she
would like or dislike that movie.

This benchmark is based on MapReduce implementations
of data mining and search algorithms. For building recom-
mendations, similarities between movies are computed by
looking to users’ ratings and preferences. The algorithm
uses item-based recommendation techniques to find movies
that are similar to other movies [26]]. Similarities between
movies are relatively static and can thus be computed once
and then reused. This is what the Recommendation system
benchmark does by storing the precomputed similarities in
the distributed filesystem. Therefore, the benchmark handles
client requests by applying a search algorithm on the pre-
computed data.

B. Business Intelligence

The Business Intelligence benchmark represents a deci-
sion support system for a wholesale supplier. It implements
business-oriented queries that examine large volumes of
data, execute queries with a high degree of complexity, and
give answers to critical business questions. MRBS includes a
MapReduce implementation of the TPC-H industry-standard
benchmark [27]]. It uses Apache Hive on top of Hadoop, a
data warehouse that facilitates ad-hoc queries using a SQL-
like language called HiveQL [28]. The benchmark consists
of eight data tables, and provides 22 types of operations
among which an operation that identifies geographies where
there are customers who may be likely to make a purchase,
or an operation that retrieves the ten unshipped orders with
the highest value. The provided operations are implemented



Table T
APPLICATION DOMAINS AND BENCHMARK CHARACTERISTICS IN MRBS. AN APPENDED "+’ SYMBOL INDICATES HIGHER DATALOAD, HIGHER
COMPUTATION CONTENTION OR HIGHER DATA ACCESS CONTENTION. AN APPENDED **’ SYMBOL INDICATES A RECOMMENDED CONFIGURATION.

Domain Dataload Execution mode Workload Computation
vs. data access
Recommendation dataload IOO,QOQ ralings, 1000 users, 1700 movie§ ] ] ] ]
system dataload+ 1 m111‘10_11 ratlngs, 6000 users, 4000 movies interactive* / batch mono-user / multi-user compute-oriented+
dataload++ 10 million ratings, 72,000 , 10,000 movies
. dataload 1GB
Business

intelligence

dataload+ 10GB
dataload++ 100GB

interactive* / batch

mono-user / multi-user

data-oriented+

Bioinformatics

dataload genomes of 2,000,000 to 3,000,000 DNA characters

interactive* / batch

mono-user / multi-user

data-oriented /
compute-oriented

Text processing

dataload text files (1GB)
dataload+ text files (10GB)
dataload++ text files (100GB)

interactive / batch*

mono-user / multi-user

data-oriented /
compute-oriented

Data mining

dataload 5000 documents, 5 newsgroups, 600 control charts
dataload+ 10,000 documents, 10 newsgroups, 1200 control charts
dataload++ 20,000 documents, 20 newsgroups, 2400 control charts

interactive / batch*

mono-user / multi-user

data-oriented /
compute-oriented
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(a) Data access per client request

Figure 2.

as HiveQL queries, that are translated into MapReduce
programs by the Hive framework. The input data of the
benchmark were generated with the DBGen TPC provided
software package, and are compliant with the TPC-H spec-
ification [27].

C. Bioinformatics

The Bioinformatics benchmark performs DNA sequenc-
ing. Users of the benchmark may choose a complete genome
to analyze among a set of genomes. Roughly speaking,
DNA sequencing attempts to find where reference reads
(i.e. short DNA sequences) occur in a genome, allowing a
fixed number of errors. This is a highly parallelizable process
that can benefit from MapReduce. The benchmark includes a
MapReduce-based implementation of DNA sequencing [3].
The data used in the benchmark are publicly available
genomes [29]]. Currently, the benchmark allows to analyze
several genomes of organisms such as the pathogenic or-
ganisms Salmonella Typhi, Rhodococcus equi, and Strepto-
coccus suis. The Salmonella Typhi is a parasite that causes
human typhoid fever; its genome is about 2,000,000 DNA
characters long. The Rhodococcus equi is a disease-causing
organism in horses, with a genome of about 3,000,000

1000000
100000
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1000
100

10

time per data read/written (ms/MB)

(b) Processing time per data size

Data-oriented vs. compute-oriented benchmarks®

DNA characters. Streptococcus suis is another pathogen
which human infection can cause severe outcomes such
as meningitis; its genome is also about 2,000,000 DNA
characters long. The benchmark can be easily extended with
new genomes to analyze by simply defining them as new
input data in MRBS configuration file.

D. Text Processing

Text processing is a classical application of MapReduce
used, for instance, to analyze the logs of web sites and search
engines. MRBS provides a MapReduce text processing-
oriented benchmark, with three types of operations allowing
clients to search words or word patterns in text documents, to
know how often words occur in text documents, or to sort
the contents of documents. The benchmark uses synthetic
input data that consist of randomly generated text files of
different sizes.

E. Data Mining

This benchmark provides two types of data mining op-
erations: clustering and classification [30]. Bayesian clas-
sification assigns a category from a fixed set of known

! Figures obtained with the first dataload of each benchmark, running
on a ten-node Hadoop cluster, with ten concurrent clients.
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Figure 3. MapReduce characteristics of benchmarks

categories to an un-categorized element. As an example of
classification application, Yahoo! Mail classifies incoming
messages as spam, or not, based on prior emails and spam
reports. MRBS benchmark considers the case of classifying
newsgroup documents into categories. A first step consists
in applying a learning algorithm to train the model. Then,
the model can be used with an un-classified document to
estimate the newsgroup the document is likely to belong to.
The benchmark uses collections of data publicly available
from [31]].

Furthermore, the benchmark provides canopy clustering
operations. Canopy clustering partitions a large number of
elements into clusters in such a way that elements belonging
to the same cluster share some similarity. For instance,
Google News uses clustering techniques to group news arti-
cles according to their topic. The benchmark uses datasets of
synthetically generated control charts, to cluster the charts
into different classes based on their characteristics [30].

VI. EVALUATION
A. Experimental Setup

The experiments presented the following were conducted
on Amazon EC2 cloud computing infrastructure [23]. Each
execution of MRBS was performed on a set of Amazon EC2
instances (i.e. virtual nodes), that consists of one node
hosting MRBS and emulating clients, and a cluster of
nodes hosting the MapReduce distributed framework. The
MapReduce cluster runs on Amazon EC2 large instances,
that are 64-bit servers, providing 4 EC2 Compute Units
in two virtual cores and equipped with 7.5 GB of RAM
and 850MB of data storage. One EC2 Compute Unit is
equivalent to the CPU capacity of a 1.0-1.2 GHz 2007
Opteron processor. The hourly price of a large instance is
$0.34.

The software environment used in the experiments is
as follows. Amazon EC2 instances run Fedora Linux 8
with kernel v2.6.21. The MapReduce framework is Apache
Hadoop v0.20.2 [18]], and Hive v0.7 [28], on Java 6.

MRBS uses Apache Mahout v0.6 data mining library[30],
and CloudBurst v1.1.0 DNA sequencing library [3]. The
following experiments with MRBS consider a workload
where client requests follow a random distribution. The
results presented in the following correspond to the average
of three executions of 30 minutes run-time, after a 15
minutes of warm-up. We conducted a set of experiments
on Amazon EC2 public cloud and on a private cloud, with
all MRBS benchmarks. However, due to space limitation,
the paper only presents the results of experiments on Ama-
zon EC2 with the recommendation system, business intel-
ligence and bioinformatics benchmarks, three benchmarks
representing real-world applications.

B. Performance Evaluation

To illustrate how MRBS evaluates the performance of
MapReduce systems, we present here some experimental
results. In these experiments, we vary the workload to
see how this impacts performance. Figure [ shows the
performance statistics obtained with a 20 node Hadoop
cluster when the number of concurrent clients increases.
Each benchmark uses its first dataload configuration as input
data (see Table [I).

Figure [4(a)| presents the throughput of each benchmark,
that is the number of clients requests handled by the
benchmark per unit of time. Figure (b)] shows the average
client response time. Response time is the elapsed time from
the moment the client submits a request until the response
is received by the client. This may include, not only the
execution time of that request, but also the overhead of time-
sharing in Hadoop cluster.

The throughput of the Recommendation System increases
quasi-linearly with the number of clients. This is due to
the fact that the MapReduce system is not overloaded and
can thus cope with more concurrent clients. This is also
confirmed by Figure f(b)| that shows that the response time
of the Recommendation System does not increase with the
number of concurrent clients. The throughput of the Bioin-
formatics and Business Intelligence benchmarks increases
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linearly between 5 and 10 clients. The throughput with 20
clients slightly increases for Business Intelligence, whereas
it does not increase appreciably with Bioinformatics, which
reaches its maximum capacity. This is also reflected in the
response times of the Bioinformatics and Business Intelli-
gence benchmarks, which present a sharp increase between
10 and 20 clients.

Thus, these experiments show that a MapReduce cluster
is able to successfully host multi-user applications. In-
terestingly, MRBS benchmarks show different throughput
speedups, and this is explained as follows. The lower the
average number of MapReduce tasks per job in a benchmark
is, the lower the number of task slots needed by the
benchmark to run a request in the MapReduce cluster is,
thus, the higher the number of available task slots for other
concurrent client requests is, and the higher the benchmark
throughput is. This is confirmed by the results shown in
Figures [3(b)| and A(a)] Consequently, thanks to concurrency
in the MapReduce cluster, the average cost of a client request
is reduced by a factor of up to 2-3, depending on the
benchmark, cf. Figure

Furthermore, MRBS also produces low-level MapReduce
performance statistics, in terms of the number of MapReduce
tasks per unit of time, and the size of data read or written in
the distributed filesystem per unit of time, as respectively
shown in Figures [5(a)l [5(b) and More specifically,
the Business Intelligence benchmark presents the highest
amount of data read/written. For reads, it is two orders
of magnitude higher than Bioinformatics, and three orders
higher than the Recommendation System. For writes, both
Bioinformatics and Recommendation System write few data
compared to the Business Intelligence benchmark, which is
five orders of magnitude higher. This corroborates the results
of client request response times, the Business Intelligence
benchmark being the one with the highest response time.

VII. CASE STUDIES

MRBS can be used for many purposes, such as comparing
different hardware configurations for running a MapReduce

system, evaluating data placement strategies, or cost-based
optimization techniques. To illustrate the use of MRBS, we
present two case studies where we investigate the scalability
of MapReduce systems with regard, on the one hand, to the
size of MapReduce clusters, and on the other hand, to the
size of MapReduce input data.

A. Scalability With Regard To Cluster Size

In this case study, we evaluate the scalability of Hadoop
MapReduce with regard to the size of Hadoop clusters. We
conducted experiments with MRBS running on Hadoop clus-
ters of different sizes: 5, 10, 20, and 25 nodes. We compare
the results of theses clusters with the results obtained when
running MRBS on one node. Figure [6] presents the perfor-
mance results of the experiments, with the Bioinformatics,
Business Intelligence and Recommendation System bench-
marks, running 10 concurrent clients. Figures and
respectively show the response time speedup and throughput
speedup as functions of cluster size. The higher the response
time speedup is, the better (i.e. lower) the response time is.
Similarly, the higher the throughput speedup is, the better
(i.e. higher) the throughput is.

Here, response time results show that, up to 5 nodes,
the Hadoop cluster is able to scale linearly when it runs
Bioinformatics or Business Intelligence applications. With
higher cluster sizes, the speedup is sublinear. The three
benchmarks achieve the maximum speedup with respectively
10 nodes for the Recommendation System, 20 nodes for
the Bioinformatics benchmark, and 25 nodes for the Busi-
ness Intelligence system. These differences in scalability
capabilities are explained by the fact that Bioinformatics
and Business Intelligence benchmarks have a much higher
number of MapReduce tasks per client request than the
Recommendation System (cf. Figure [3(c)). Thus, the two
former benchmarks are able to exploit concurrency when
having more nodes.

Figure describes the average cost of a client request
as a function of the number of nodes in Hadoop clusters.
Obviously, the larger is the Hadoop cluster running on
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Amazon EC2, the higher is the cost of a client request. Sur-
prisingly, the Business Intelligence benchmark shows that a
five node Hadoop cluster costs less than one node. This is
explained by the fact that with 5 nodes, Business Intelligence
achieves a superlinear speedup in throughput, and request
cost is a function of throughput and Amazon EC2 hourly
cost model.

B. Scalability With Regard To Data Size

In the second case study, we investigate the scalability
of Hadoop MapReduce with respect to the size of input
data. We conducted experiments with the MRBS Business
Intelligence benchmark, with different sizes of input data:
1 GB, 10 GB, 20 GB, and 30 GB. The experiments were
conducted on a 20 node Hadoop cluster with 10 concurrent
clients. Figure 7] presents performance results as functions of
input data size. The measured performance of the Business
Intelligence benchmark is compared with the theoretical
linear performance slowdown that we could expect when
increasing the data size.

Figure shows that, even though the performance
decreases when the input data are larger, request throughput
performs better than linear slowdown (note the logarithmic
scale of the figure). Here, throughput is three times better

than linear slowdown. This is due to the fact that accesses
to the Hadoop filesystem do not increase linearly with the
size of input data, as shown in Figure Figure [7(b)
describes the throughput of data read or written in the
Hadoop filesystem, and Figure describes MapReduce
task throughput. The results show that with input data larger
than 10 GB, the Hadoop cluster is overloaded, since it
executes more MapReduce tasks while handling less client
requests. This is also confirmed by other statistics reported
by MRBS and showing an increase of MapReduce task
retries, up to +25%, when input data are larger than 10 GB.

VIII. RELATED WORK

Benchmarking is an important issue for evaluating dis-
tributed systems, and extensive work has been conducted
in this area. Various research and industry standard per-
formance benchmarking solutions exist. TPC-C [32], TPC-
W [33], TPC-H [27], and SPEC OMP [34]] are domain-
specific benchmarks: the first evaluates on-line transac-
tion processing (OLTP) systems, the second applies to e-
commerce web sites, the third evaluates decision support
systems, and the fourth applies to parallel scientific comput-
ing applications that utilize OpenMP. SPECweb is another
performance benchmark that evaluates web applications
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from different domains, such as banking, e-commerce and
support [35].

Even though these benchmarks are useful in analyzing
distributed systems in general, they are not applicable to
MapReduce systems. The need of MapReduce benchmark-
ing is motivated by the many recent works that have
been devoted to the study and improvement of MapReduce
performance and scalability. These include task scheduling
policies in MapReduce [3], [6]], [7]], cost-based optimization
techniques [8], replication and partitioning policies [10],
[L1]. All these works use microbenchmarks such as MapRe-
duce sort, grep and word count programs introduced in [1].
MRBench also provides microbenchmarks in the form of a
MapReduce implementation of TPC-H queries [36]. How-
ever, these microbenchmarks are not representative of full
applications with complex workloads, and they do not pro-
vide automated statistics for performance.

More recent work proposed HiBench [37], a benchmark
which evaluates Hadoop in terms of system resource uti-
lization (e.g. CPU, memory), and Hadoop job and task
performance. Although low-level resource monitoring may
be useful in targeting specific system features, HiBench does
not avoid the pitfalls of microbenchmarks, missing multi-
user workloads for batch or interactive systems.

IX. CONCLUSION

The paper presents a comprehensive performance bench-
mak suite for MapReduce systems. MRBS benchmark
suite adequately handles: (i) multi-criteria analysis with
a characterization of different aspects of the performance
of MapReduce systems, (ii) diversity in a wide range of
application domains under various workloads and dataloads,
and (iii) wusability with a configurable MRBS framework
portable across different cloud infrastructures and MapRe-
duce frameworks. Evaluation of MRBS on Hadoop clusters
running on Amazon EC2 successfully demonstrates these
properties.

MRBS currently covers five application domains, is based
on 32 MapReduce programs, and provides 26 sets of config-

input data size (GB)

(b) Data read/write throughput

3000
10 100 1 10 100

input data size (GB)

(c) MapReduce task throughput

Performance under different data scales

urations and input data. Future work includes the exploration
of other application domains and MapReduce programs.
We hope that such a benchmark suite will help researchers
and practitioners to better analyze and evaluate MapReduce
systems.
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