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Solving hard combinatorial problems has always been a challenge. The constant progress in algorithm design

and the emergence of powerful large-scale parallel platforms allow to solve a larger number of instances of
such problems. As a consequence, many efficient algorithms are available for solving the same problem.
However, none of them strictly dominates the others on all the instances.

An important problem is to determine an adequate selection of algorithms for solving a given set of
instances in order to minimize the total completion time. However, little is known in cooperation between
algorithms for an improved global objective. The execution model of algorithms portfolio is a nice framework
for studying this question. It consists in executing all the available algorithms concurrently and interrupt

them as soon as a solution is found. This model of execution raises however the question of the resources
repartition among the algorithms. Interesting directions in this way have been proposed through parallel
algorithms portfolio problem. The idea is that it is possible to learn about the resource sharing based on the

observation of executions of the algorithms on a set of instances. Parallel algorithms portfolio problems are
generally intractable and thus, many heuristics have been proposed to solve them. However, these solutions
do not take into account the possibility of sequential algorithms or unknown speed-ups.

We propose in this paper a two phases approach for learning resource sharing in the context of a portfolio.

The first phase consists in estimating what may be the optimal useful execution workload for each algorithm.
This estimation is done through a clustering approach inspired by the resolution of the set cover problem.
The second phase consists in minimizing the estimated workload by optimal resource allocation. We propose
for this purpose a solution based on dynamic programming.

This approach is evaluated experimentally on two settings. In the first setting we simulate the concurrent
execution of sequential SAT algorithms. In the second case, we implement a parallel algorithm for CSP
based on algorithms portfolio. The experiments clearly exhibit that the proposed approach is suitable for

defining an efficient concurrent model of execution.
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1. INTRODUCTION

This work focuses on the resolution of hard computational problems. Following the
advances in algorithms design and the evolution of computing platforms, there exist
many heuristics that can be used for solving the same problem. Such heuristics usually
have their own characteristics on the execution time depending on the target instances
and they behave differently. It is commonly well-admitted that on most problems, no
single algorithm dominates all the others (this is for instance the case in scientific
contests like the SAT competition 3). Thus, a possible approach for efficient implemen-
tation consists in performing concurrent executions of algorithms [Huberman et al.
1997; Gomes and Selman 2001]. For example in such executions, all the algorithms
run on an instance and are stopped as soon as a solution is found. Obviously, there is
an overhead to pay for the wasted time lost while computing on the whole set of heuris-
tics, however, redundancy might still be interesting. Positive applications of this idea
can be found in cooperative search techniques [El-Abd and Kamel 2005]. Moreover, the
idea of concurrent-cooperative executions is particularly suitable in the context of new
parallel architectures (large scale multi-core machines). However, it implies a smart
resource sharing beyond the algorithms (memory, processor, bandwidth) that is not
easy to determine because of resource limitations and the behaviors of the algorithms
that depend on the amount of allocated resources. In this paper, we propose to study
efficient strategies for the resource sharing problem in this context. We target two ba-
sic problems, namely SAT (Satisfiability problem) and CSP (Constraint Satisfaction
Problem).

1.1. Related works

The idea of using multiple algorithms for solving a problem has been formalized inside
various techniques for designing algorithms. Beyond them, we distinguish between
algorithms selection, algorithms cascading and algorithm portfolio techniques. In al-
gorithm selection [Houstis et al. 2000; Burke et al. 2010] the idea is to deal with the
choice in a short amount of time of the best algorithm among a set of known algorithms
for solving an instance. In algorithm cascading [Matteo Frigo 1998], the problem is ex-
pressed by a generic recursive algorithm whose recursive calls can be muted in call
to another algorithm. The best choice of these mutations is the key point of the tech-
nique and it depends mainly on the sizes of the sub-problems. We focus in this work
on algorithms portfolio [Huberman et al. 1997] which proposes to run concurrently the
different algorithms. Moreover, we consider parallel computing platforms for running
these algorithms with various relative amount of resources.
Two types of concurrencies can be considered: The first one (resource sharing) con-

sists in fixing the number of processors shared between the algorithms while the
second (time sharing) assumes that the resource sharing might change and can be
adapted during the execution. The optimization of time sharing has mainly been stud-
ied in [Sayag et al. 2006; Streeter et al. 2007] in a theoretical perspective and in [Xu
et al. 2008; Bhowmick et al. 2003] where it is applied to the resolution of the SAT prob-
lem and on solving non-linear numerical systems. We focus in this work on the first
type of concurrency. For optimizing resource sharing, the main idea proposed in [Sayag
et al. 2006] is to learn it from a finite set of executions on a given testbed. It is formal-
ized as the Resource Sharing Scheduling Problem (RSSP) which consists in determin-
ing the best proportion of resources to allocate to each algorithm for solving a finite set
of instances as fast as possible. In this model, all the algorithms are executed (with an
allocation that has to be determined) on all the instances concurrently until an algo-

3http://www.satcompetition.org
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rithm finds a solution. The complexity of the problem relies on the combinatorics of the
various resources allocation which have different completion times for each instance.
The usage of a testbed for defining resource sharing is particular well-suited for solv-
ing hard computational problems where the algorithm performance on a set of hard
instances is a well accepted qualitative metric. The original model defined in [Sayag
et al. 2006] assumes a fractional number of processors. Fractional resources sharing is
hard to implement in practice. Alternative solutions based on discrete resources have
then been proposed in [Bougeret et al. 2011; Ngoko and Trystram 2009b]. The study
proposed in this paper is based on these works.

However, it improves the two following aspects: the first aspect is that until now, the
resource sharing has been studied excluding sequential algorithms or the possibility
to not select a resource to execute an algorithm. The second aspect is that the resource
sharing has generally been studied assuming linear speed-up on parallel algorithms
(or quasi-linear speed-up). This might not always be the case in practice. Moreover,
increasing resources in a parallel algorithmmight even deteriorate the execution time.

1.2. Contributions

In this work, we propose a general solution for designing algorithms portfolio which
takes into account the new features described at the end of the previous section. The
construction is based on a two phases approach. In a portfolio execution, there is one
algorithm that leads to the interruption of the others. The first phase corresponds to
an estimation of the leading algorithms, giving a set of instances. This is achieved
by using a heuristic inspired by the resolution of the set cover problem. The second
phase consists in assigning the right amount of resources to the algorithms in order to
minimize the cost induced by the leading algorithm repartition. We show that this later
problem is similar to the search of the shortest path in a graph [Cormen et al. 2001].
We propose an efficient solution based on dynamic programming for solving it. Then,
we present a quantitative assessment on two settings through a series of experiments.
In the first setting, we simulate the concurrent execution of actual sequential SAT
algorithms. In the second one, we implement a parallel algorithm for CSP based on
algorithm portfolio. Experimental evaluations show that with representative testbeds,
the proposed approach is suitable for defining a concurrent model of execution.

1.3. Paper organization

The paper is organized as follows: Section 2 is devoted to introduce the model of re-
source sharing and the description of the portfolio approach. Section 3 presents the
algorithms for solving the resource sharing problem. Section 4 consists in applying
the resource sharing algorithms for the construction of parallel solvers for the SAT
and CSP problems. We conclude and briefly discuss some extensions of this work in
Section 5.

2. MODEL

2.1. Parallel portfolio problem

For defining the resource sharing, we consider a setting where there are a finite set
of candidates composed of algorithms and a shared-memory parallel homogeneous
architecture (typically a multi-core machine). We assume a representative set of
instances that captures the behavior of the candidate algorithms. In this setting the
construction of an optimal resource sharing has been formalized through the dRSSP
problem introduced in [Bougeret et al. 2009]. We recall below the formal definition of
the decision version of this problem:
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discrete Resource Sharing Scheduling Problem (dRSSP)
Instance: A finite set of instances I = {I1, . . . , In}, a finite set of algorithms A =
{A1, . . . , Ak}, a set of m identical computing resources, a cost C(Ai, Ij , p) ∈ R+ for each
Ij ∈ I, Ai ∈ A and p ∈ {1, . . . ,m}, a real value T ∈ R+.

Question: Is there a vector S = (S1, . . . , Sk) with Si ∈ {0, . . . ,m} and 0 <
∑k

i=1 Si ≤
m such that

∑n

j=1 min
1≤i≤k

{C(Ai, Ij , Si)|Si > 0} ≤ T ?

In order to illustrate the interest of this problem, suppose that we want to solve
two instances (I1, I2) of the same problem. There are two available parallel algorithms
(namely, A1, A2) that have each a linear speed-up. Let suppose that we have 2 re-
sources and that the following execution cost matrix gives the execution times of each

algorithm on the entire set of resources. C =

(

2 10
10 1

)

.

Observe that instance I1 is solved in 10 time units by algorithm A2 and in 2 time
units by A1. Instances I2 is solved in 1 time unit by A2 and 10 time units by A1. Thus,
if we consider only I1 to solve, we can just execute A1. However, if A1 is again used for
solving I2, the total cost is 12. Now, if we give one resource to both algorithms A1 and
A2, the total time required becomes 4 + 2 = 6 ≤ 12.
dRSSP is derived from the original problem proposed by Sayag [Sayag et al. 2006]

adapted to a parallel homogeneous context. The NP-completeness and inapproxima-
bility of dRSSP has been proved in [Bougeret et al. 2009]. In the following, we will use
following simplified notations: C∗(Ij) = min

1≤i≤k
C(Ai, Ij , 1) and C(Ai, Ij , 1) = C(Ai, Ij)

2.2. Discussion about dynamic setting and cooperation

We can make at least two criticisms to dRSSP: this model suggests a static resource
sharing between the algorithms, it does not take into account the fact that while exe-
cuting some algorithms during a few steps, it is possible to identify some algorithms
that should not lead quickly to a solution. Another criticism about dRSSP is that it
does not take into account cooperation between the algorithms (for instance, for re-
moving redundant computations).
About the static character of dRSSP, we can notice that it can be used for defining

a dynamic resource sharing model. An example of this usage was suggested in [Ngoko
and Trystram 2009a; Gebruers et al. 2005; Gagliolo and Schmidhuber 2008] where a
benchmark of instances is considered. For each incoming instance I to solve, using a
learning mechanism, we determine the subset of benchmark instances I ′ ⊆ I whose
behavior might a priori be close to that of I. Then, we can use the resource sharing
given by the dRSSP solution for the instances I ′ to solve I.

About the lack of cooperation, we can remark that even if we assume that the dif-
ferent algorithms can share informations about their executions. The resource sharing
defined by dRSSP can be used as an approximation for optimizing resources exploita-
tion.

3. SOLVING ALGORITHM PORTFOLIO

As previously said, dRSSP can not be approximated within a constant factor. This
suggests that we should deal with heuristics for designing polynomial time solutions.
In dRSSP, we are searching for a fixed allotment to define an optimal concurrent

execution of algorithms for a set of known instances. All the algorithms with at least
one resource are run until a solution is found. The resolution of an instance with this
model comprises useful executions (those that lead to determine a solution for an in-
stance) and useless ones (that will be interrupted without providing a solution). We
will formalize useful executions through the notion of workload distribution. The ob-
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jective of such a distribution is to determine which algorithm should solve the various
instances in the concurrent setting. Then, it provides an approximation for each al-
gorithm of the load to optimize in the resource sharing. Based on this analysis, our
methodology decomposes the dRSSP resolution into two phases: the prediction of the
workload distribution and the resource allocation. We will present in the next section
a more detailed point of view on the workload distribution.

3.1. Workload distribution

We define a workload distribution by an injection σ : I −→ A. In this application, each
instance is assigned exactly to one algorithm. There can be an algorithm for which
there is no assigned instance. Given a distribution σ and an instance Ij , σ(Ij) gives the
algorithm that has a useful execution on Ij . In this definition, we suppose that there is
just one algorithm with a useful execution per instance. This choice is natural since we
stop the concurrent execution of algorithms on any instance as soon as one algorithm
ends.

Given a workload distribution σ, we define the workload denoted by Ai asW (σ,Ai) =
∑

Ij∈σ−1(Ai)

C(Ai, Ij). It captures the sum of sequential execution times that Ai can take

for solving instances assigned to it from the σ distribution.
The ignorance of algorithm workload is one point that makes dRSSP different from

the other classical load balancing problems. Indeed, they generally assume the knowl-
edge of the load for each algorithm in a sequential context. For dRSSP the workload is
certainly a good estimation of charges. The next section deals with its estimation.

3.2. Workload estimation

We organize the workload estimation in two parts. We first fix the objectives that must
be pursued by the optimal distribution and based on them, we propose an algorithm.

3.2.1. Defining workload estimation problem. Let us denote by D the set of all possible
workload distributions. We formulate the problem of finding the optimal workload dis-
tribution through the Workload Estimation Problem (WEP) defined in Figure 1.

Minimize
(

∑n

j=1 W (σ, Ij), |A
+|
)t

1. σ ∈ D
2. A+ = {Ai ∈ A|σ

−1(Ai) 6= ∅}

Fig. 1. Workload Estimation Problem (WEP)

The various objectives of WEP are motivated as follows: it is well-known that for
achieving optimal performance in parallel, the sequential execution time should also
be minimized. Given a distribution σ, the sum

∑n
j=1 W (σ, Ij) is the minimal amount

of time needed for solving instances in a sequential setting. By reducing this amount,
one can expect to reach good performances for the resource sharing. The reduction of
the sequential execution time here must not ignore that the more there are algorithms
such that σ−1(Ai) 6= ∅, the fewer there are resources to share per algorithm. Thus,
we will have less benefit from the parallelism perspective. Indeed, if all the algorithms
have a positive workload in a distribution, it is sure that

∑n
j=1 W (σ, Ij)will be minimal.

However, this must not help if for example on all resources, there is an algorithm that
completely dominates the other on each instance.

We formulated the search of the optimal workload as a bi-objective problem. Many
concepts can be used for defining the solution for a such problem. We will use here the
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pareto front concept [Dutot et al. 2009] ( an illustration is provided in Figure 2). From
the NP completeness result of dRSSP in [Bougeret et al. 2009], one can easily show
that this problem is NP-complete and inapproximable if the second criteria is fixed.
Then, we intend to approximate optimal solutions for WEP in the next section.
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Fig. 2. Illustration of possible distributions. We denote each distribution by a subsetA+ such that instances
are assigned to algorithm in order to minimize the workload. For instance, the minimal workload for solving
all the instances with {A1, A3} is 2 + 1 + 3 = 6. The sets that are circled correspond to Pareto dominant
solutions

3.2.2. Set cover Formulation. For solving bi-objective problems, a common approach con-
sists in fixing one objective as a constraint and optimizing the second one. In our case,
this approach is adequate since possible values of the second criteria (min{|A+|}) are
discrete and finite. Let us now suppose that we are looking for the optimal workload
where at most r algorithms (1 ≤ r ≤ min{k,m}) have a positive workload. The estima-
tion of the optimal workload distribution for a fixed r can be stated as a set covering
problem from the following observation : For a distribution σ, the inverse σ−1 is given
by σ−1(A1), . . . , σ

−1(Ak) where each σ−1(Ai) ⊆ I is a subset of instances. Since σ is an
injection,

⋃

1≤i≤k

σ−1(Ai) = I. The obtention of the minimal workload can be done in se-

lecting between all possible subsets for each σ−1(Ai), the ones leading to the minimal
workload.
For approximating σ−1, we do the following steps: We generate all possible subsets

σ−1(Ai) for each algorithm Ai. Since each of these subsets is included in I, we have
a total of k.2n sets G = {G1, . . . Gk.2n} that are partial assignments of instances to
algorithms. Let suppose that for each subset Gu, alg(Gu) is the algorithm to which we
refer in the assignment (for example the subset G1 can refer to a possible assignment
for alg(G1) = A1 ). Given G, we choose between all possible selections Sel(G) ⊆ G such
that

⋃

Gj∈Sel(G)

= I and |A(Sel)| ≤ r where A(Sel) = {alg(Gj)|Gj ∈ Sel(G)}, the selection

of subsets with minimal workload. The condition |A(Sel)| ≤ r ensures that we do not
have more that r distinct algorithms.

ACM Journal of Experimental Algorithmics, Vol. X, No. X, Article 1, Publication date: August 2011.
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For determining the complete Pareto front approximation, we repeat the set cover
process with different values of r. At the end, only the solutions that are not Pareto
dominated are considered.

The formulation above is based on a set cover representation of the distribution
function. It proposes to solve min{k,m} problems of covering for approximating the
workload distribution. However, the number of sets is exponential: thus, we have to
reduce this number.

3.2.3. Approximating cover. To reduce the number of sets, we observe that each set
Gu ∈ G gives a partial assignment for a workload distribution in which the sequential
resolution time of an instance Ij ∈ Gu is C(alg(Gu), Ij). This time is not necessary the
optimal possible sequential time C∗(Ij) if we consider the time of all algorithms on
Ij . We will say that in the set Gu, the distance at which the instance Ij is solved is
C(alg(Gu),Ij)

C∗(Ij)
.

For each set, there is a maximal distance value gm = max
Ij∈Gu

{C(alg(Gu),Ij)
C∗(Ij)

}. This is

the biggest distance at which an instance of the set is solved. From a depreciative
evaluation of the quality, let us emphasize that if a partial assignment leads to solve
one instance at the maximal distance g, it can also handle the possibilities of solving
any other instances at g. In this way, the number of sets is restricted to g-OPT sets.
A g-OPT set is an element of G that contains any instances that it can solve at a

given maximal distance value. More precisely, a g-OPT set Gg
i corresponds to a set Gu

such that alg(Gu) = Ai and contains all instances Ij such that C(alg(Gu), Ij) ≤ gC∗(Ij)
(i.e. the instances that are solved with a distance at most g ∈ [1 +∞[).
The idea of g-OPT sets is to consider that in the optimal solution, if there is an algo-

rithm that might not solve one instance optimally, this can be the case for many other
instances. Thus, it is not necessary to consider all the possible partial assignments.
The advantage of this restriction is that we just need to consider a polynomial number
of sets. This remark is summarized in the following proposition.

PROPOSITION 3.1. We can restrict distance values gm for defining all g-OPT sets

Gi
gm

= {Ij |C(Ai, Ij) ≤ gmC∗(Ij)} to factors
C(Ai,Ij)
C∗(Ij)

.

This result is straightforward from the definition of g-OPT sets. One of its conse-
quence is that the number of g-OPT sets is at most ((n− 1)k + 1)k.

Let us now formalize the selection of sets. For this purpose, we adopt a solution
inspired on the greedy algorithms for solving the set cover problem. A dynamic price
is associated to the sets at each step. Throughout the execution, the sets are selected
with the most interesting price and then the covered elements are removed from the
remaining sets. The algorithm ends when we have a number of sets corresponding to r
distinct algorithms or a set cover. For adapting this algorithm to our case, we have to
define precisely the notion of price.
Pricing sets : For pricing sets, we propose to promote sets which have an optimal

solution on heavy instances (i.e. the instances with a big C∗(Ij)). Indeed, the impact of
a non-optimal resolution of the heaviest instances might be in general more important
in the workload than the non-optimal resolution of other instances. We use this obser-

vation to fix the price of a g-OPT set Gg
i as P g

i =

∑

Ij∈G
g
i

C∗(Ij)

g
. The price in this definition

takes into account the minimal workload processed in the set but also the quality (g).
One might think that for having high price, we simply need to have many instances or
heavy instances in the set. However, we take into account the quality in introducing g
in the price. Thus, the prices advantage the sets that solve a lot of instances optimally
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ALGORITHM 1: HIF(r)

G← Generate gOPTsets()
S ← ∅
C ← ∅
for Gg

i ∈ G do

P g
i ←





∑

Ij∈G
g
i

C∗(Ij)

g





end
while (|S| < r and |C| < n) do

(Xr, Zr)← {(Ai, G
g
i ) /∈ S|P g

i is maximal}
for Gg

i ∈ G do
Gg

i ← Gg
i \Z

r

P g
i ←





∑

Ij∈G
g
i

C∗(Ij)

g





end
S ← S ∪ (Xr, Zr)
C ← C ∪ Zr

end

(in these cases
∑

Ij∈G
g
i

C∗(Ij) is big and g minimal). One advantage of the adopted pricing

strategy is that since set corresponds to algorithms, we will be inclined to select algo-
rithms in function of the set of instances on which they have a good execution time.
This suggest the complementary of the selected algorithms.
Deriving the greedy algorithm: the problem here is to select r sets corresponding

to different algorithms with minimal workload. We give in the algorithm 1 the greedy
solution (called HIF for Heaviest Instances First) derived from the previous pricing
strategy assuming that there are at most r sets corresponding to different algorithms
to select.
At the beginning of the algorithm, the set of partial assignments (G) is initialized

and prices are computed. At each step, HIF(r) selects a set corresponding to a g-OPT
set and then, it removes this set from the sets of partial assignments. Then, it removes
the instances covered by this set from the other sets and then, it recomputes the prices.
S is the main output of HIF(r). It contains sets of instances with associated algorithm
reference.
There are two conditions that might end the execution of HIF(r). The first is that r

distinct algorithms have been selected. The second is that we have a workload distri-
bution covering all the instances (|C| = n). It is important to notice that these criteria
are not necessarily inclusive.
On two different steps u < v of HIF(r), some selections (Xu, Zu) and (Xv, Zv) where

Xu = Xv can occur. We then have a selection of a set Zv associated to an algorithm
that is already included in S. In such cases, by making the operation: S ← S∪(Xr, Zr),
we will just add the set Zr to Zu in the pair (Xu, Zu) ∈ S.
At the end of HIF(r), we have a solution (X1, Z1), . . . (Xr, Zr) where each Xu corre-

sponds to an algorithm of I associated to a set of instances Zu belonging to G. For the
purpose of notations, let suppose that for each algorithm Ai the set associated is Gi. If
an algorithm Au is not selected, we set Gu to ∅. The workload of each algorithm Ai can
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be computed as follows:

W (HIF(r), Ai) =







0 if Ai is not selected in S
∑

Ij∈Gi

C(Ai, Ij) otherwise.

The computed workload distribution given by the pairs (Ai, Gi) might not cover
all the instances. However, the strategy of prioritizing sets solving heavy instances
has the advantage of leading to a distribution for instances that are the most im-
portant for the resource sharing. Moreover, we propose to complete it by adding
all the non-covered instances Ij to the set Gi such that W (HIF(r), Ai) > 0 and
C(Ai, Ij) = min

Au∈A,W (HIF(r),Au) 6=0
C(Au, Ij) (this place Ij in the set of minimal workload for

it between the selected sets). Finally, we make vary r to obtain a Pareto front approx-
imation of the workload distribution. At the end of HIF(r), S contains the estimated
workload distribution.

3.3. Resource allocation

We now deal with the question of resource allocation. At this level, HIF(r) produced a
distribution which associates a set of instances Gi for each algorithm Ai. The available
resources must be allocated to all algorithms in order to minimize the time required
to process the sets of instances Gi. Considering a limited number of resources m, the
decision version of this problem can be stated as follows:

Instance: A finite set of k instances subsets= {G1, . . . , Gk}, a finite set of algorithms
A= {A1, . . . , Ak}, a set ofm identical resources, a costC(Ai, Ij , p) ∈ R+ for each Ij ∈ Gi,
Ai ∈ A and p ∈ {1, . . . ,m}, a real value T ∈ R+.

Question: Is there a vector S = (S1, . . . , Sk) with Si ∈ {0, . . . ,m} and 0 <
∑k

i=1 Si ≤

m such that
∑k

i=1

∑

Ij∈Gi
{C(Ai, Ij , Si)} ≤ T ?

The objective function is explained as follows: on the chosen distribution, attributing
Si resources to Ai leads to a processing time of

∑

Ij∈Gi
{C(Ai, Ij , Si)} for processing in-

stances Gi. The sum of these processing times must be minimized taking into account
that there are m resources. Obviously, if Si = 0 and Gi 6= ∅ then C(Ai, Ij , Si) = +∞.
This formulation differs from dRSSP because we fixed the right execution for solving
the instances. We present how to solve this allocation problem in the next section.

3.3.1. Dynamic programming for the allocation problem. The determination of the minimal
resource allocation is similar to the search of a shortest path in a weighted graph.
We consider each graph node at depth u as a partial allocation (A1, S1), . . . , (Au, Su).
It has a weight denoted by Cost(u,mu) =

∑u

i=1

∑

Ij∈Gi
{C(Ai, Ij , Si)}. One can no-

tice that nodes at depth k correspond to a complete allocation. The edges between
nodes at depth u and u + 1 have a weight which corresponds to the amount of
resources assigned for Au+1 from the a partial allocation (A1, S1), . . . , (Au, Su) to
(A1, S1), . . . , (Au, Su), (Au+1, Su+1)) . Our objective is to find the path that leads to the
node of smallest weight at depth k.
We adapt the Dijkstra algorithm [Cormen et al. 2001] to the resource allocation as

follows: We consider k steps where each step u consists of choosing any assignment
for the algorithm Au that leads to a total utilization of 0 to m resources and will have
a minimal load. The cost at step u for a total utilization of u resources is denoted by
Cost(u,mu). This function obeys the following equations:
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1:10 A. Goldman and Y. Ngoko and D. Trystram

Cost(u,mu) =











min
0≤mu−1≤mu

{Cost(u− 1,mu−1) +
∑

Ij∈Gu

C(Au, Ij ,mu −mu−1)} if u > 1

∑

Ij∈G1

C(A1, Ij ,m1) if u = 1.

The relations above can be easily derived for the the case u = 1 . The explanation
of the case where u > 1 is that if we have mu resources already assigned at step u,
they have been totally or partially assigned on steps 1, . . . , u. Then, the minimal cost
that we can be obtained withmu resources assigned at step u is derived by considering
all possible assignments at the previous step added to the workload induced by the
assignment of remaining resources to Au.
It is easy to establish that the optimal allocation is determined by computing the

previous relations all the possible values Cost(u,mu), 1 ≤ u ≤ k, 0 ≤ mu ≤ m and then,
choosing the resource allocation corresponding to min

1≤u≤m
{Cost(k, u)}.

Finally, to find the optimal resource allocation, we proceed in generating all the
Pareto solutions from HIF. For each of these solutions, we compute the optimal re-
source sharing, estimate its cost and then select the resource sharing with the smallest
cost.

3.4. Complexity analysis

In this part, we proceed at a theoretical evaluation of our approach. We have the fol-
lowing result:

PROPOSITION 3.2. The two phases approach proposed has a complexity in
O(min{k,m}(n2k2 + km2))

PROOF. In algorithm HIF(r), the key operation is the reinitialization of g-OPT sets
prices. Since a g-OPT set has at most n instances, we can compute its price in O(n).
Assuming that there are ng g-OPT sets, the reinitialization of prices in HIF(r) can be
done in O(r.ng.n). Since we have ng = ((n − 1)k + 1)k from proposition 3.1, we deduce
that the complexity of HIF(r) is in O(r(nk)2).

For the resource allocation, we construct a matrix Cost of size (m + 1) × k. From
the recurrence equation of Cost, we deduce that computing C(u,mu) requires mu com-

parisons. This implies that each column of the matrix yields to m(m+1)
2 comparisons.

Thus, the computation of the whole matrix requires k
m(m+1)

2 comparisons. Since for
estimating the workload with HIF we make vary the size r in HIF(r), we obtain the
result.

4. APPLICATIONS

For assessing the proposed approach, we consider two case studies. The first deals with
the construction of a portfolio of sequential algorithms solving the well-known satisfi-
ability problem (SAT). In this case, we did not implement a real concurrent execution
of sequential algorithms, but a simulator based on the executions of actual algorithms.
The interest of this study is to evaluate how close the workload distribution function
issued from HIF is to the optimal. In the second case, we used our solution for defining
a parallel algorithm for the Constraint Satisfaction Problem (CSP).

4.1. Designing a parallel algorithm for SAT

Given a set of clauses expressed as disjunction of boolean variables, the SAT problem
consists of deciding if there is an assignment of boolean values to variables that sat-
isfies all the clauses (makes all them true). There exist many sequential algorithms
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for solving this problem. We used our approach here for the development of a par-
allel solver based on concurrent execution of sequential algorithms and simulate the
performance that could be expected.

The data for building the portfolio come from a SAT database (SatEx [Simon and
Chatalic 2001]4) which gives the CPU time for the execution of a set of 23 sequential
heuristics (SAT solvers) on 1303 SAT instances.

4.1.1. Brief description of the database. We present here a brief description of the bench-
mark and refer to [Simon and Chatalic 2001] for a more exhaustive one. The 1303
instances of the SatEx database are issued from many domains where SAT is en-
countered. Some of them are: Logistic planning, formal verification of microprocessors,
Scheduling. Some instances are also issued from many challenging benchmarks for
SAT which are used in one of the most popular annual SAT competition 5

4.1.2. SAT solvers. The SatEx database contains three main SAT solvers families:

—The DLL family with the following heuristics: asat, csat, eqsatz, nsat, sat − grasp,
posit, relsat, sato, sato− 3.2.1, satz, satz − 213, satz − 215, zchaff ,

— the DP family with : calcres, dr, zres,
— the randomized DLL family with : ntab, ntab− back, ntab− back2. relsat− 200

It contains also some other algorithms: heerhugo, modoc, modoc − 2.0 non classified in
a family above. Beyond the set of algorithms and instances, the algorithm that solves
all the instances in minimum time is zchaff . Our goal is to show that we can do better
with a parallel portfolio.

4.1.3. Experiments plan and results. The general setting of our experiments on SAT is
the following: we consider a multi-core parallel machine with p cores. A parallel SAT
algorithm can be designed by running on each core one of the 23 sequential SAT solvers
and stop when an algorithm finds a solution. In a multi-core context, the necessary
synchronization for stopping all algorithms can be easily implemented by using the
shared memory. The question is to know which algorithm to choose when p ≤ 23. As
claimed in this paper, this choice can be learnt with a benchmark of SAT instances.
Since the SAT solvers are all sequential algorithms, an optimal execution of concurrent
algorithms on the benchmark can be derived from the optimal workload distribution
where we have at most p SAT solvers to which an instance is assigned. We do not need
to use the resource sharing phase of our approach since solvers are sequential.
This setting allows us to evaluate the first part of our two phases approach (HIF

vs Optimal distribution). We associate in the evaluation other meaningful choices of
distributions; Mainly:

—The Winners distribution (WIN) which assigns a positive workload only to the first
(p) fastest algorithms. In this distribution, each instance is solved by the algorithm
with the smallest sequential execution time between the p selected ones. It is obvious
that the workload of this distribution is better than those of the best single algorithm;

—The Random distribution (RAND) which arbitrarily assigns a positive workload to
(p) algorithms. As for the previous one, each instance is solved by an algorithm with
the smallest sequential execution time.

We use the 1303 SatEx instances as a benchmark and we assume that the execution
time provided by each algorithm for each instance in SatEx is what we will have in
executing the same algorithm on a single processor on the parallel system.

4http://www.lri.fr/~simon/satex/satex.php3
5http://www.satcompetition.org
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In the setting described above, we run two series of experiments. In the first one,
we make vary p in order to compare the distributions on workload and the execution
times. In the second one, we select multiple SAT solvers from the 23 available and
build multiple distribution functions from them. The objective is to make a more large
evaluation of the quality of the distribution function produced by HIF. The size of
selected SAT solvers in these experiments vary between 1 and 20. For each size km,
we select 5(km − 2) distinct subset of SAT solvers. For each subset of size km, we build
a distribution function for values of p between 1 and km − 2. We can notice that if
p = km − 1 or p = km, the construction of a distribution is trivial.
Figure 3 depicts the workload given by the different distributions on the SatEx in-

stances when we select p solvers among the 23 available ones. For the random distri-
bution, the workload is estimated over 100 experiments.
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Fig. 3. Distribution workload on SatEx

The figure shows that an increase on p improves any distribution. Since this is the
case even for the random distribution, we conclude that the complementarity between
solvers in SatEx is such that even in taking any subsets of solvers and run them con-
currently, the resulting parallel solver could have a better performance that sequential
ones on which it is based.
On all SAT solver selections, the HIF distribution is better that the WIN and RAND

distributions. An explanation is suggested by the change between HIF and WIN work-
loads from p = 1 to p = 2. For selecting two solvers, HIF will choose first the best solver
like WIN. While for the second solver WIN will select the one that performs well in
the remaining ones, HIF will look more for a solver that is complementary with what
was already chosen. In Table I we give a better view of the differences between HIF
and WIN through the ratio between their workloads and the optimal distribution. HIF
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Table I. Average ratio between
HIF, Winners, Random and the
optimal for different values of p

p HIF WIN RAND
1 1.00 1.00 32.64
2 1.00 1.58 20.26
3 1.11 2.22 10.98
4 1.48 2.87 8.71
5 2.34 3.93 10.15
6 1.62 2.21 9.27
7 1.63 2.29 8.15
8 1.65 2.31 7.21
9 1.61 2.08 6.57
10 1.00 2.08 5.23
11 1.00 2.08 4.92
12 1.00 1.69 4.17
13 1.00 1.69 3.66
14 1.00 1.69 3.21
15 1.00 1.69 2.80
16 1.00 1.63 2.62
17 1.00 1.61 2.39
18 1.00 1.00 1.86

Table II. Execution time of HIF and the optimal algorithm for different values of p (here k = 23)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
HIF 6 6.4 6.4 6.4 6.6 6.4 6.8 6.4 6.6 6.8 6.8 6.8 7 7.4 7 7 7 7.2
OPT 0.0 0.0 0.2 1.4 5.6 18 45.4 94.8 162 232.4 284.4 296.2 263.4 195.4 121.8 63 27 9.2

is near-optimal when p ≥ 10. In some cases, for smaller values of p its ratio to the
optimal solution can reach 2.34. This is because HIF does not adapt dynamically its
selection mechanism depending on the value of p. Indeed, while with p = 1, one must
give a positive workload to the best solver, when p = 2 the best solver is not necessarily
the one that could be combined with a second one for having the best solution. By the
same way, some solvers selected when p = 2 might not be taken when p > 3 for having
optimal performances.

HIF does not lead to the optimal distribution always. However, its provides a much
more shorter time. This is reported in Table II which gives the optimal distribution
with the optimal algorithm of [Knuth 1998] for computing the different possibilities
of choosing p algorithms beyond 23. These measures are taken from executions on a
4 cores hyperthreaded architectures where each core has a frequence of 2661MHz. A
schematic view of the memory organization of this architecture is given at Figure 7.
The measures of execution time reveal an explosion of the optimal distribution time

when p ≥ 6 mainly due to the number of combinations that should then be taken
into account. This explosion reaches a pic and then slows down when there are less
combinations. The execution time of HIF is in general higher than those of the WIN
or RAND distributions that are lower than 1. We explain this by the manipulation of
g-OPT sets whose number is important when the number of instances is large. In our

experiments, we limited the precision of maximal distance values (factors
C(Ai,Ij)
C∗(Ij)

) to

10−3. Even if this certainly contributed to reduce the execution time, better solutions
might be envisioned.

Finally, in Table III, we report the main results of our second series of experiments.
We present the ratio between the workload of different distributions with the optimal
distribution for different selection of subsets of solvers. We group the ratio per size of
subsets of solvers selected beyond the 23 available. This experiment confirms the fact
that HIF is in general better than the other distributions (except the optimal).
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Table III. Ratio between HIF, Win-
ners and Random for different val-
ues of km

km HIF WIN RAND
4 1 1 8.99
5 1.03 1.02 6.03
6 1.16 1.304 7.76
7 1.26 1.41 11.76
8 1.23 1.45 5.21
9 1.21 1.48 6.15
10 1.25 1.43 7.24
11 1.26 1.46 7.48
12 1.18 1.38 6.21
13 1.32 1.71 5.04
14 1.34 1.60 5.68
15 1.26 1.61 5.45
16 1.33 1.76 5.86
17 1.35 1.8 10.91
18 1.28 1.87 6.03
19 1.272 1.74 6.19
20 1.28 1.75 7.26

For each km we selected a total of
5(km − 2) subsets

The experiments of this part show that the HIF distribution proposes an interesting
compromise between the workload produced and the time required to compute it. We
will see in the next section how it works while used for designing a portfolio of parallel
solvers.

4.2. Designing a parallel algorithm for CSP

A binary Constraint Satisfaction Problem (CSP) is defined as a tuple CP = (V,D,C, I)
where:

— V = {v1, . . . , vn} is a set of variables
—D = {D(v1), . . . , D(vn)} is the set of definition domains for each variable
—C = {C1, . . . Cm} is a set of constraints where each Ci = (v1i , v

2
i ) ∈ V × V

—N = {N1, . . . Nm} is the set of incompatible assignments with each Ni = {(d1i , d
2
i ) ∈

D(v1i )×D(v2i )} giving for Ci the assignments that will lead to unsatisfiability.

The objective is to find an assignment of values to the variables of V with no incom-
patible assignments. The CSP generalizes many other computational problems like
SAT, graph coloring or the N queens. It is also important to notice that there exists
a version of this problem where the objective is to find all the possible valid assign-
ments. We do not consider this variant here. One of the most popular technique for
solving CSP is backtracking which is presented below.

4.2.1. Backtracking for CSP. The idea in backtracking is to progressively assign a
value to the variables v1, v2, . . . , vn. At each level, we check if the partial assign-
ment realized fulfills all the constraints. Let denote an assignment as a tuple:
(v1, f(v1)), . . . , (vn, f(vn)) where vi are variables and f(vi) are the assigned values.
Given a partial assignment (v1, f(v1)), . . . , (vu, f(vu)), u < n, if it is impossible to assign
a value f(vu+1) to vu+1 such that there is an incompatible assignment (f(vj), f(vu+1)),
then we come back and reassign another value to vu. We proceed this way until a
complete assignment is obtained.
The progressive checking of partial assignments in backtracking reduces the explo-

ration of useless search space since a solution is not completely generated before being

ACM Journal of Experimental Algorithmics, Vol. X, No. X, Article 1, Publication date: August 2011.



Optimizing resource sharing on cooperative execution of algorithms 1:15

checked. However, it is important to have a good order for the assignment of values to
variables. Such an order may reveal quickly incompatible assignments. This idea mo-
tivated the proposition of multiple ordering strategies for variables in backtracking.

We will restrict the study to 9 ordering heuristics:

—Lexicographic (lexicographic order on the variable names);
—Degree ordering with: max-degree and min-degree (dual of max-degree). max-degree

prioritizes variables that are the most involved in constraints. The degree of a vari-
able is the number of constraints in which it is involved;

—Forward degree ordering with: max-forward-degree(dynamically computes the max-
imum degree only for subset of non assigned variables), min-forward-degree (dual of
max-forward-degree);

—Domain ordering with: min-domain (prioritizes variables for which we have the less
number of values that are not part of incompatible assignments), max-domain (dual
of min ordering);

—Domain/degree ordering with: min-domain/degree (prioritizes variables for which we
have the smallest domain/degree), max-domain/degree (dual of min-domain/degree).

We illustrate some ordering strategies in Figure 4. We use there a bigraph represen-
tation of constraints. Edges between variables mean that there is an assignment of
values that is not allowed for the two variables. On this example, the max-degree will
take v1 as the first variable since its degree is the greatest one (4). max-forward-degree
will put also v1 at the first position but will differ on the position of v5.

In some orderings we might have situations where many variables can be selected
for a same position (for example if they have the same degree). We applied the lexico-
graphic order in these cases.
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Fig. 4. Example of heuristic ordering for 6 variables vi. The dual versions will give the reverse order

For each of these sequential backtracking algorithms we provide a parallel imple-
mentation.

4.2.2. Parallel Backtracking for CSP. A common approach for parallelizing backtrack-
ing consists of distributing the search by splitting the domain of the first
variable(v1) [Platzner and Rinner ; Habbas et al. 2000]. If D(v1) is splitted in l sub-
domains, we obtain l sub-problems differing on the domain of the first variable. The
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parallel algorithm formulation is derived from the concurrent execution of a sequen-
tial algorithms on each sub-problem. This parallelization approach raises the question
of efficient domain splitting for balancing the work among processors.
We address this question in a multithreaded context with shared memory. In this

setting, concurrent executions for solving sub-problems are done with threads (each
thread running a same sequential algorithm). As load balancing mechanism, we em-
ploy a dynamic work sharing beyond threads. When a thread does not have something
to do, it steals a sub-problem x beyond the |D(v1)| that have not be considered by any
thread. We proceed like this until a stopping criterion is reached (i.e. when a solution
is found or when the exploration of all possibilities is complete).
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Fig. 5. Illustration of Parallel Backtacking with n threads. The search space is represented as a tree where
the nodes correspond to a set of variable assignments. Each thread can steal a sub-tree where v1 is already
assigned.

From the approach described, multiple parallel backtracking can be derived for each
ordering heuristic. In each of them, a thread executes a same sequential algorithm
(corresponding to backtracking with an ordering heuristic) for solving a sub-problem.
Since the threads have the same ordering strategy, they consider the same variable v1.
This simplifies the distribution of the search space.

4.2.3. Parallel Portfolio Backtracking for CSP. In a parallel portfolio of backtracking, we
suppose that the different threads can implement different sequential backtracking
algorithms in a same concurrent execution. On any instance to solve, all threads are ex-
ecuted until a stopping criterion is reached . We defined two versions of portfolio back-
tracking. The non-cooperative case where beyond threads of the same family (threads
implementing the same sequential algorithms), one entire search space is shared and
the cooperative case where there is a unique search space for all threads. In all theses
cases the work is shared beyond threads using the dynamic work sharing principle
described for parallel backtracking. For computing the resources allocation in the par-
allel portfolio, we used the dRSSP model with a benchmark of CSP instances. The
interest of the non-cooperative case is to be more respectful of the solution suggested
by dRSSP.
In the cooperative case we need to define a policy for distributing the search tree

because since different threads have different orderings, the first variable might not be
the same for all of them. For managing this, the first variable is taken as the variable
with max-degree (for promoting propagation of constraints at the first level).

Figure 6 depicts the differences between parallel, non-cooperative and cooperative
backtracking.

4.2.4. Stopping criteria and synchronization. For the considered CSP instances, we de-
cide to stop the execution when a satisfiable assignment or a proof that the problem
might not be satisfiable is obtained. This yields to the following conditions for stopping
threads execution:

(1) A solution is found by one thread. In this case, we have a satisfiable assignment;
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Fig. 6. In parallel backtraking, all threads are of the same family. It might not be the case in cooperative
and non-cooperative backtracking. The difference between these two later algorithms is is that computations
are not repeated in the cooperative algorithm

Table IV. Classes of CSP instances

class name Model B parameters
A < 30, 8, 0.31, 0.34 >

B < 30, 8, 0.18, 0.5 >

C < 20, 8, 0.315, 0.34 >

D < 25, 10, 0.26, 0.66 >

E < 8, 6, 0.72, 0.45 >

F < 25, 10, 0.105, 0.7 >

G < 50, 10.0, 0.138, 0.33 >

H < 22, 6.0, 0.6, 0.1 >

(2) The exploration of the search space is completed without finding a solution. In this
case, we have an unsatisfiable assignment;

(3) For the special case of non-cooperative backtracking, it is not useful to wait for
the end of all threads. If indeed a family of threads ends their execution without
success, then we have an unsatisfiable assignment.

Because the execution of a thread interrupt the others, a synchronization policy
must be defined. We used a shared memory variable accessed for writing in mutual ex-
clusion and events counters. While the shared memory variable serves to indicate that
a satisfiable or unsatisfiable assignment is obtained, events counters serve to count
the number of threads per families that ended their execution without satisfiability
(useful for non-cooperative cases).

4.2.5. Experiments settings. Benchmark: For the experiments, we used a benchmark
of Random CSP instances generated using the model B [Gomes et al. 2004]. In this
model, a CSP class of instances is characterized by a tuple < n,m, d, t >. n here is the
number of variables, m the domain size, d the proportion of constraints (we have ex-

actly d.⌊n(n−1)
2 ⌋) and t the proportion of unsatisfiable assignments for each constraint

(we have exactly ⌊t.d2⌋ non authorized assignments per constraint). Using this bench-
mark, 9 classes of instances taken from the review of literature mainly of [Petrovic and
Epstein 2007; Gomes et al. 2004] and described in table IV have been considered.

These classes cover different structures of a CSP problem like the situations where
there are many variables and relatively small domains or fewer variables but larger
domains [Petrovic and Epstein 2007]. Moreover, the experiments show that some of
them (like class H) are particularly easy to solve while some others (G for example)
are hard to solve.

Architecture: We run the experiments on a parallel multi-core machine with 4 cores.
The cores have a frequence of 2661MHz and hyperthreading is used in each core. We
give in Figure 7 a representation of the memory organization. This organization has
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Table V. Cumulative execution times of parallel backtracking on p resources

p lex. min-deg. max-deg. min-dom max-dom min-forward-deg. max-forward-deg. min-dom/deg. max-dom/deg
1 3814 4696 526 3711 3679 3920 3346 3848 3653
2 3513 4653 190 3493 3460 3798 2897 3505 3347
3 3354 4653 70 3374 3318 3657 2438 3329 3190
4 3263 4650 60 3312 3150 3576 2280 3210 3062
5 3245 4650 53 3285 3146 3571 2214 3196 3061
6 3268 4643 60 3307 3157 3513 2162 3272 3030
7 3175 4643 65 3204 3129 3546 2113 3190 2980
8 3170 4660 65 3190 3195 3645 2118 3129 2993

three cache levels. At level L1 and L2, each core has its own cache. The cache of level
L3 is however shared between the different cores.

Machine (5971MB)

Socket #0

L3 #0 (8192KB)

L2 #1 (256KB)L2 #0 (256KB) L2 #2 (256KB) L2 #3 (256KB)

L1 #0 (32KB) L1 #1 (32KB) L1 #2 (32KB) L1 #3 (32KB)

Core #0 Core #1 Core #2 Core #3

PU #0

PU #1

PU #2

PU #3

PU #4

PU #5

PU #6

PU #7

Fig. 7. processors and memory organization

According to the characteristics of this architecture, we consider that the number of
concurrent threads that could be executed in parallel is fixed to 8. This is deduced from
the theoretical limit of the benefit that can be expected from hyperthreading.

4.2.6. Experiments plan and results. The generation of the instances is based on a ran-
dom generator 6. For each of class of instances (A, B ..), we generated 25 instances.
Since there are 9 classes, we have a total of 225 instances. For each instance, we mea-
sured the execution time for the different parallel backtracking algorithms. Table V
reports the total time needed by each algorithm for solving the 225 instances with p
threads. Each parallel backtracking algorithm is executed in at most 30 seconds.

The max-degree algorithm dominates clearly on all classes of considered instances.
An interesting aspect in this table is the increase of the time of max-degree between
p = 5 and p = 6. This increase is due to the parallelism overhead on the resolution of
some instances when the number of threads increases. Let suppose for example that
during the execution we have d sub-trees that can dynamically assigned. If for a sub-
tree x, we have a satisfiable assignment that is the easiest one to find for all sub-trees,
then we have a fast solution with x threads. If the number of threads increases, we
do not have any benefit from parallelism but we have to pay an additional time for
its management. These times are particular expensive when hyperthreading is used
(specially when p > 4).

6available at http://www.lirmm.fr/˜bessiere/generator.html
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Table VI. Execution time variation on the number of resources

p max-deg. Theo. pred. Non-Coop. back. (time, factor). Coop. Back.
8 53 25 (45, 1.8) 720
7 65 36 (58, 1.63) 744
6 60 141 (210, 1.34) 805
5 53 402 (459, 1.14) 810
4 60 407 (447, 1.09) 812
3 70 423 (465, 1.09) 806
2 190 435 (476, 1.09) 603
1 526 526 (526, 1) 526

The factors give the overhead in comparison to theoretical previsions

The increase of the execution time for max-degree however suggests however a pos-
sible interesting situation. Indeed, we have an algorithm that does not need to use the
total amount of possible threads. Thus, some of them can be devoted to the concurrent
execution of another algorithm. The interest is that on instances where max-degree is
not the best one, another algorithm may help to obtain a faster solution.

Using the benchmark data, we build cooperative and non-cooperative backtracking
algorithms suggested by the resource sharing of our two phases approach. Table VI
presents the execution time of these algorithms. After the resolution of dRSSP on p re-
sources, we have a resource sharing R(p) whose estimated execution time is in column
Theo. pred.. The estimation is given by the objective function of dRSSP on the alloca-
tion R(p). The execution times obtained from the real execution of the non-cooperative
and cooperative backtracking algorithms with allocations R(p) are in columns Non-
Coop. back and Coop. Back . The value factor in column Non-Coop. back is the ratio
between the effective observed time for non-cooperative backtracking and the theoret-
ical estimations.

The non-cooperative backtracking has a better execution time than the best algo-
rithm on p = 7, 8 resources. This means that on some instances where max-degree is
not optimal, we benefit from the execution of another concurrent algorithm. There is
however an important overhead between the theoretical predicted time for the non-
cooperative backtracking and the real observed time. One explanation for this phe-
nomenon is that theoretical measures do not take into account hyperthreading over-
head. Indeed, the distance with theoretical estimations (factor) decreases when we
reduce the number of threads (p) and it becomes more stable when there is no need to
use hyperthreading.

However, when the number of resources is lower than 6 resources, the non-
cooperative backtracking does not perform as well as the the best algorithm. This is
caused by wrong computations of the distribution function in situations of super linear
speed-up. On some instances (mainly for class G), max-degree has a large time units
for p = 1, 2 resources and then, its time is close to 0 when p = 3. Since the workload
distribution is decided from the performance of the algorithm on the sequential case,
we do not consider while computing resource sharing that max-degree can have a good
execution time for the resolution of these instances. The consequence is that it has less
charges and when p = 1, 2, 3, 4, 5, we assign just one resource to it. Then, this makes
the time of the portfolio close to the time of max-degree with one resource.
In all the considered cases, the cooperative backtracking is worse than the other

solutions. Dynamic work has a responsibility in this. Typically, there are situations
where a thread will take a sub-tree on which it does not know how to find quickly
a solution in comparison to another thread of a different family that is fast for the
sub-tree.
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Table VII. Speed-up of different algorithms

p max-deg. Theo. pred. Non-Coop back. Coop. Back.
8 9.92 20.23 11.69 0.73
7 8.09 14.61 9.07 0.70
6 8.76 3.73 2.50 0.65
5 9.92 1.30 1.14 0.65
4 8.76 1.29 1.17 0.65
3 7.51 1.24 1.13 0.65
2 2.76 1.20 1.11 0.87

Finally, we present the speed-up achieved by the different algorithms in table VII.
For each number of resources, the speed-up is defined as the ratio between parallel and
sequential time. This table shows that it is possible to obtain at a speed-up greater
than 8 (the number of threads). But, this is a common feature already observed on
parallel backtracking algorithms [Habbas et al. 2000].
Experiments on CSP mainly showed that even on a hyperthreaded architecture with

an algorithm that highly dominates the others, it is possible to build a combination
of algorithms based on our two phases approach with better performances than any
single algorithm taken alone. However, this approach can yield to poor performances
when there are few resources and when the algorithms have a super linear speed-up.
These experiments also show that in a search problem where an algorithm strongly
dominates the others, it might be better to duplicate the work for the best algorithm in
order to avoid situations where a weaker algorithm has a space containing a solution
that the best algorithm can find much faster.

5. CONCLUSION

We have presented in this paper a new approach based on parallel algorithms portfolio
for solving a set of instances of hard problems. This approach improves the other exist-
ing parallel portfolio approaches since it takes into account more features. It has been
tested on two target problems, namely SAT and CSP. The obtained portfolios are better
than any other algorithms. The main reason is that the proposed mechanism provides
a learning process which can determine the complementary of the algorithms in the
portfolio. For SAT, the experimental results are close to the lower bound corresponding
to the best parallel solution based on the concurrent executions of sequential solvers.
For CSP, we show how efficient distributions of the search space between multiple CSP
algorithms can be designed. The corresponding portfolio has been implemented in a
multi-threaded parallel multi-core machine on random instances. It is efficient and
robust in the sense where the obtained results are good even in the case of a family
where an algorithm dominates all the others.
Further improvements are possible. One promising direction is to take into account

potential super-linear speed-ups (when the processing time of an algorithm can dras-
tically decrease while the resources increase). This problem is closer to load balancing
instead of resource sharing. Another issue is to incorporate some dynamicity in the
solution proposed for the theoretical estimation of the loads in order to obtain a more
precise approximation. Finally, the overheads induced by the concurrent execution of
algorithms could be introduced into the definition of dRSSP for providing a more pre-
cise theoretical time estimation.
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