

ParaMiner : a Generic Parallel Pattern Mining Algorithm

Benjamin Negrevergne, Alexandre Termier, Marie-Christine Rousset and Jean-François Méhaut

Abstract
Pattern mining is a major area of data mining, with
many application domains. To solve this inherently
costly task, many ad-hoc highly optimized algo-
rithms have been specifically designed for mining
certain kinds of data. We describe a generic and
parallel pattern mining algorithm (PARAMINER),
in which we have generalized specific state-of-the-
art optimizations. The genericity of PARAMINER
is demonstrated by showing that it captures three
different pattern mining problems encountered in
real-world applications. Its efficiency is demon-
strated by showing that it is competitive with dif-
ferent existing algorithms specifically designed for
each of these problems.

1 Introduction
Pattern mining is one of the major areas of data mining.
Its goal is to discover patterns hidden in large volumes of
data, usually by counting their number of occurrences. Since
the pioneering work [Agrawal and Srikant, 1994] for mining
itemsets in transactional data, pattern mining has been ex-
tended to numerous problems such as mining sequences, trees
and graphs. Pattern mining has many industrial and scientific
applications in various domains such as web usage mining,
bioinformatics or drug design. Pattern mining is inherently
a costly task for which many ad-hoc highly optimized algo-
rithms have been designed. Such algorithms exploit the speci-
ficity of the data to be mined and of the kinds of patterns that
are looked for. However, their lack of genericity makes their
use difficult for data owners non specialist in pattern mining.

Until recently, a real theoretical foundation for pattern min-
ing was lacking. The main advances made in [Boley et al.,
2010; Arimura and Uno, 2009] have been to formalize the
link between pattern enumeration and set theory. They have
highlighted that for most pattern mining problems, the so-
lutions form a set system. They also showed that when the
formed set system meets some properties (strong accessi-
bility in [Boley et al., 2010], accessibility in [Arimura and
Uno, 2009]), one can enumerates all the patterns in output-
polynomial time. As a proof, they provide algorithms to do
so. Enumeration is a critical issue in any pattern mining algo-
rithm, with their contribution, Boley and Arimura have pro-

vided an efficient enumeration strategy that can be used in
most pattern mining algorithms.

Building on the principles of enumeration in strongly ac-
cessible set systems we have designed and implemented
PARAMINER, the first generic and parallel pattern mining al-
gorithm. We showed that enumeration of patterns occurring
in a dataset can be highly optimized in order to achieve practi-
cal efficiency. We demonstrate its genericity and its efficiency
by applying it to quite different pattern mining problems such
as mining gradual itemsets ([Ayouni et al., 2010]) and mining
connected relational graphs ([Yan et al., 2005]).

Section 2 provides basic notions for the problem statement.
Section 3 describes the PARAMINER algorithm. Section 4 is
dedicated to experiments. We conclude in Section 5.

2 Preliminaries and problem statement
Pattern mining is the problem of discovering patterns of inter-
est in a given dataset. Following [Boley et al., 2010; Arimura
and Uno, 2009] we define the problem of pattern mining as
an enumeration problem in a set system. This allows to ex-
ploit structural properties of set systems to design efficient
enumeration algorithms. In addition to [Boley et al., 2010;
Arimura and Uno, 2009], we explicitly involve in the pic-
ture the dataset to be mined. In this section, we first set the
generic definitions of datasets and patterns that we will use in
the rest of the paper. Then, we recall the notions of (strongly)
accessible set systems introduced by [Boley et al., 2010;
Arimura and Uno, 2009] and we explain how they can im-
pact the efficiency of pattern enumeration.

2.1 Datasets and (closed) patterns
Datasets: In most practical pattern mining problems, the
dataset DE to be mined can be defined over a finite ground
set E as a multiset of subsets of E. Each element of DE is
called a transaction.
For instance, in the context of market basket analy-
sis [Agrawal and Srikant, 1994], the ground set E =
{a, b, c, . . . , } is a set of items identifying products such as
apple, beer, chocolate, and each purchase ticket stored in
the so-called transactional database is an itemset, i.e., a sub-
set of products. In our setting, the transactional database
will be represented by the corresponding dataset DE =
{ab, abc, ab}, where we will denote the itemset {a, b, c} by
abc as a shortcut.

In the context of gene network analysis [Yan et al., 2005], the
ground set E is the set G × G of pairs of genes representing
all the possible interactions between a given set G of genes,
and the dataset is a particular multiset of connected graphs
(i.e., subsets of E = G×G) modeling gene networks that are
extracted from experimental observations.
Patterns: given a ground set E, a pattern is a subset of E
occurring in the dataset and verifying a property of interest
IntProp. A pattern P occurs in DE if it is a subset of at
least one transaction of the dataset.
Support set of a pattern: the support set DE [P] of a pattern
P is the multiset of transactions of DE in which it occurs.
Property of interest: It varies depending on the application
needs. It may depend on the dataset or not. For instance, in
many pattern mining applications, the property of interest is
based on a frequency property: the searched patterns are those
that occur frequently (or rarely) in the dataset. In other appli-
cation settings however, the property of interest is not related
to the dataset but to the patterns themselves and the ground set
on which they are defined. For example, the searched patterns
may be those including a given element of E, or for graph pat-
terns those of a given size or those that are connected. In this
paper, we will consider properties of interest so that the inter-
est of a pattern, if it depends on the dataset, can be checked
on its support set: IntProp(P,DE) = IntProp(P,DE [P]).
This constraint is not very restrictive since it is satisfied by
the properties of interest in most pattern mining applications,
in particular those based on frequency.
Closed patterns: a pattern P is closed if there does not exist
any strict subset of P that is also a pattern with the same
support set.
Closure operator: Applied to a pattern P , it computes the
maximal patterns (w.r.t. the set inclusion) having the same
support set as P . By construction, the closure of a pattern is
closed. Note that if the property of interest satisfies the above
constraint, the closure of any pattern can be computed from
the support set of that pattern. Although this is not guaranteed
in general, the closure of a pattern is unique in most of the
pattern mining applications (e.g., those based on frequency).
The set of closed patterns represents a lossless compression
of the set of patterns occurring in a given dataset. The pattern
mining problem that we consider can now be defined.
Pattern mining problem: given a ground set E, a dataset
DE and a property of interest IntProp, output the closed
patterns occurring in DE . A naive solution to compute the
complete set of solutions is to enumerate all the subsets of E
and to test for each of them if (i) they occur in the data, (ii)
they verify the property of interest (i.e. they are patterns), and
(iii) they are closed. This solution is not feasible in practice,
due to the size of the powerset of E. Most pattern mining al-
gorithms use an enumeration strategy which performs a con-
structive enumeration of the closed patterns, using a pattern
augmentation relation.
Pattern augmentation: A pattern Q is an augmentation of a
pattern P if there exists e ∈ E such that Q = P ∪ {e}.
Recent works [Boley et al., 2010; Arimura and Uno, 2009]
have shown that the structural properties of the augmentation
relation depend on the accessibility properties of the set sys-
tem formed by the patterns.

2.2 Set systems and accessibility properties
A set system over a ground set E is a pair (E,F), where
F ⊆ 2E is a family of subsets of E. In the context of pattern
mining, F is the set of patterns that is intentionally defined
by the property of interest.
The following definitions define three accessibility proper-
ties, from the least strong to the strongest one (as stated in
Proposition 1).

Definition 1 (Accessible set system) A set system (E,F) is
accessible if for every non-empty X ∈ F , there exists some
a ∈ X such that X \ {a} ∈ F .

Definition 2 (Strongly accessible set system) A set system
(E,F) is strongly accessible if for every X,Y ∈ F with
X ⊂ Y , there exists some a ∈ Y \X such that X ∪{a} ∈ F .

Definition 3 (Independent set system) A set system (E,F)
is independent if Y ∈ F and X ⊆ Y together imply X ∈ F .

Proposition 1 (Relationship between accessibility properties)
Let (E,F) be a set system:

- if it is independent, then it is strongly accessible,
- if it is strongly accessible, then it is accessible.

When the set system formed by the patterns is accessible,
there is a way to reach each pattern by repeatedly augmenting
patterns, starting from the empty set (denoted ⊥). The set of
patterns together with the augmentation relation form a strict
partial order with⊥ as its minimum element, thus having a di-
rected acyclic graph (DAG) structure. In order to avoid pro-
ducing several times the same (intermediate) patterns, most
pattern mining algorithms build iteratively an enumeration
tree that is in fact a covering tree of that DAG. An important
source of limitation in practice is the space required for stor-
ing the enumeration tree under construction because its size
grows exponentially in function of the size of the ground set
E. The problem of designing poly-space algorithms for enu-
merating closed patterns in accessible set systems has been
investigated recently ([Boley et al., 2010; Arimura and Uno,
2009]). We summarize now their underlying principles that
we have re-used to design our PARAMINER algorithm.

2.3 Principles of poly-space closed pattern
enumeration algorithms

Given a ground set E, a dataset DE , a property defining the
patterns of interest, and a closure operator, poly-space pattern
enumeration algorithms compute the set of closed patterns
occurring in DE using a polynomial space. They generate
new closed patterns by augmentation and closure of a current
pattern (⊥ at the beginning of the process). Without storing
the whole enumeration tree under construction, a core issue
is to detect whether the new patterns have already been pro-
duced in another branch that is no longer in memory.
First principle: An order on E is chosen, and patterns and
transactions (that are subsets of E) are represented as ordered
sequences of elements of E. For instance, if E is made of the
elements b, a, c, and d, a possible order is a < b < c < d,
and the subsets {b, a} and {b, d, a} will be represented by
the sequences [a, b] and [a, b, d] (for which we will use the
notation ab and abd as a shortcut). The empty set is denoted

by ⊥. The lexicographic order induced by the order defined
on E is used to compare the patterns, for example: ab < abd.
Second principle: For a given closed pattern P (⊥ at the
beginning), generate all its augmentations P ∪ {e} such that
P < P ∪ {e} and, if they occur in the dataset and verify
the property of interest, compute their closure Q. Iterate the
process on those patterns Q for which P is the first parent.
Definition 4 (First parent) Let P be a closed pattern, and
Q the closure of an augmentation P ∪ {e} of P such that
P < P ∪ {e}. P is the first parent of Q if there does not
exist a closed pattern P ′ < P and an element e′ such that
P ′ < P ′ ∪ {e′} and Q is the closure of P ′ ∪ {e′}.

When the set formed by the patterns is accessible, testing
that a given closed pattern P is the first parent of a closed
pattern Q is a difficult task that may lead to a reverse genera-
tion of a whole branch of the enumeration tree (see [Arimura
and Uno, 2009]). On the other hand, when the set system
formed by the pattern is independent, checking whether P is
the first parent of Q can be reduced to check whether Q > P
([Boley et al., 2007]). When the set system formed by the
patterns is strongly accessible, this test is more complicated
but much simpler than for the case of simply accessible sys-
tems. It has been shown in [Boley et al., 2010] that it can
be done efficiently by remembering the list of augmentations
performed on the branch ending to P , and checking if ele-
ments of these augmentations appear in Q. This list can be
encoded in an exclusion list of elements of E, the size of
which is in O(log(|E|)). As few real-world pattern mining
problems correspond to independent set systems, we focus on
problems corresponding to strongly accessible set systems.

3 Generic parallel pattern mining algorithm
In this section, we present the PARAMINER algorithm, We
first explain how it exploits parallelism in the construction of
the enumeration tree. Then, we show how we have general-
ized state-of-the art optimizations for dataset reduction.

3.1 Parallel enumeration of the closed patterns
The enumeration strategy implemented in PARAMINER is
based on the principles recalled in Section 2.3 for the strongly
accessible systems. They are well-suited to the parallel and
independent exploration of each branch of the enumeration
tree just by handling an exclusion list of elements. The ex-
ploration of a branch is performed by the recursive expand
procedure described in Algorithm 2. It takes as input a closed
pattern P , the reduced dataset DP associated to it (see Sec-
tion 3.2), and an exclusion list EL that holds for all the
branches issued from P . It expands the pattern P by aug-
menting it with elements e occurring in its support set (Line
1). If those P ∪ {e} satisfy the property of interest IntProp
(given as input to PARAMINER), it applies the appropriate
closure operator Clo (given as input to PARAMINER) to get
closed patterns Q. For each of them, Line 4 checks whether
P is their first parent by a simple intersection test with the
exclusion list EL (as in [Boley et al., 2010]). Those Q are
outputted as soon as they are produced in Line 6. The expand
procedure is then recursively called (Line 8) on each Q, to-
gether with its corresponding reduced dataset DQ (computed

Line 7 by the reduce function described in Algorithm 3, Sec-
tion 3.2), and the same exclusion list EL.

In Algorithm 2, parallelism is expressed by the spawn di-
rective of Line 8. Instead of directly executing the recursive
calls to expand, these calls are pushed into a waiting list of
parallel jobs. As soon as a thread becomes idle, it can take any
of these waiting expand calls and develop this node of the
enumeration tree. This avoids load unbalance: if the enumer-
ation tree has a very big subtree, many expand calls will be
spawned there, and more threads will end up processing this
subtree. In practice, spawn is implemented with the Melinda
library, that has been used to implement a parallel version of
LCM [Negrevergne et al., 2010]. Melinda preserves cache lo-
cality as much as possible by assigning in priority to a thread
the recursive calls that it has spawned. PARAMINER is de-
scribed in Algorithm 1: it simply consists in executing the
expand procedure applied to the empty closed pattern ⊥, the
whole dataset and an empty exclusion list.

Algorithm 1 PARAMINER

Require: groundset E, interest property IntProp, closure
operator Clo, dataset D

Ensure: Output all closed patterns occurring in D.
1: expand(⊥,D, ∅)

Algorithm 2 Expanding a closed pattern P

Require: P , Reduced dataset DP , Exclusion List EL
Ensure: Output all closed patterns issued from P occurring

in DP .
1: for all e such that DP [{e}] 6= ∅ do
2: if IntProp(P ∪ {e},DP) then
3: Q := Clo(P ∪ {e},DP)
4: if EL ∩Q = ∅ then
5: //P is Q’s the first parent
6: output Q
7: DQ := reduce(DP , e, EL)
8: spawn expand(Q,DQ, EL)
9: EL := EL ∪ {e}

10: end if
11: end if
12: end for

3.2 Dataset reduction
A key point for limiting the complexity of PARAMINER is to
reduce the dataset involved in the computations of the prop-
erty of interest IntProp (Line 2 of Algorithm 2) and of the
closure function Clo (Line 3 of Algorithm 2). For each closed
pattern Q produced in the expand procedure, a new dataset is
constructed, that is restricted to transactions that are sufficient
to compute further augmentations of Q. This reduced dataset
is denoted DQ and is constructed in line 7 of Algorithm 2 by
calling the reduce function applied to (i) the reduced dataset
DP of the first parent P of Q, (ii) the element e with which P
has been augmented to produce Q (by closure of P∪{e}), and
(iii) the exclusion list EL. The dataset reduction is described

in Algorithm 3. It first removes transactions from DP , and
then suppresses elements from the remaining transactions.

Removing transactions: It is done in Line 1 of Algorithm
3, and consists simply in initializing DQ with the support set
DP [{e}] of {e} in DP , where e is the element chosen to aug-
ment the pattern P such that Q is the closure of P ∪{e}. This
is not a limitation for correctly checking IntProp because
IntProp(Q,DE) = IntProp(Q,DP [{e}]) for the follow-
ing reasons:
- by the constraint on IntProp imposed in Section 2:
IntProp(Q,DE) = IntProp(Q,DE [Q]),
- by definition of the closure: DE [Q] = DE [P ∪ {e}] (=
DE [P][{e}]),
- IntProp(Q,DE [P][{e}]) = IntProp(Q,DP [{e}]), since
the transactions in DP are the same transactions as DE [P]
(with some non-significant elements removed, see below).

Suppressing elements from transactions: The elements
of the exclusion list EL that can be safely suppressed from
transactions inDQ are the elements that are guaranteed not to
appear in any closure of a pattern (i.e. that would disappear
after the closure done in Line 3 of Algorithm 2). For deter-
mining quite easily such elements, DQ is partitioned (by the
function partition(DQ, EL) called Line 3 in Algorithm 3)
in groups of sets of transactions that have the same elements
except elements of EL. For each group G of the partition,
we suppress from each of its transactions the elements of EL
that do not appear in all the transactions of the group. Such
elements will not belong to the closure of any pattern Q′ fur-
ther produced from augmentations of Q and supported by the
transactions in G. This is done in Lines 4–8 of Algorithm 3.
Note that this is a generalization of the so-called prefix inter-
section optimization at the core of LCM [Uno et al., 2004].

Algorithm 3 The dataset reduction algorithm
Require: Reduced dataset DP of a pattern P , Element e

such that Q = Clo(P ∪ {e},DP), Exclusion List EL
Ensure: Reduced dataset of Q: DQ

1: DQ ← DP [{e}]
2: // Suppress elements from transactions in DQ

3: for all G ∈ partition(DQ, EL) do
4: for all e ∈ EL do
5: if there exists t′ ∈ G such that e 6∈ t′ then
6: for all t ∈ G do
7: t′ ← t\{e}
8: DQ ← DQ\{t} ∪ {t′}
9: end for

10: end if
11: end for
12: end for
13: return DQ

We have implemented PARAMINER in C++. We do not de-
tail here other optimizations though they are important for
the performances reported in Section 4. They are based on
compact data structures for representing the datasets and for
efficiently computing support sets of elements, in the spirit of
occurrence deliver in LCM [Uno et al., 2004].

4 Experiments
We have tested PARAMINER on three different pattern min-
ing problems for which we only had to implement the prop-
erty of interest and the closure operator. Section 4.1 shows
the encoding of these different problems in (independent or
strongly accessible) set systems. Section 4.2 summarizes ex-
perimental results on real-world data.

4.1 Genericity of our approach
We present now the different problems and the correspond-
ing ground sets, datasets, properties of interest and closure
operators.
Mining closed frequent itemsets: For this reference prob-
lem, first defined by [Pasquier et al., 1999], the ground set E
and the dataset DE have been introduced in Section 2.1.
Property of interest: For P ⊆ E, IntProp(P) ≡ |DE [P]| ≥
ε (for a given constant ε).
Closure operator: Clo(P) =

⋂
t∈DE [P] t.

Accessibility: [Boley et al., 2010] have shown than the asso-
ciated set system is independent and thus strongly accessible.
Mining closed frequent connected relational graphs: A re-
lational graph is a labelled graph in which all the node la-
bels are distinct. Such graphs can represent gene networks as
well as social networks [Yan et al., 2005]. The corresponding
ground set and dataset have been introduced in Section 2.1.
Property of interest: For G ⊆ E, IntProp(G) if 1)
|DE [G]| ≥ ε (for a given constant ε) and 2) G is connected.
Closure operator: The closure of a pattern P is the intersec-
tion of the connected graphs of DE [P] containing P .
Accessibility: The set system associated to this problem is
strongly accessible, as a direct consequence of the strong ac-
cessibility of the set system associated with Problem 5 in [Bo-
ley et al., 2010].
Mining closed frequent gradual itemsets: This challenging
recent problem consists in mining attributes co-variations in
numerical databases [Ayouni et al., 2010]. Consider the ex-
ample database of Table 1.

Place Temperature in °C Electric consumption in W
p1 0 2000
p2 10 1000
p3 20 500
p4 30 1500

Table 1: Example numerical dataset

When considering the sequence of the tuples p1, p2 and p3,
it appears that an increase in temperature is correlated with
a decrease in electric consumption. A pattern is the gradual
itemset (Temperature↑, ElectricConsumption↓) which is
respected by the sequence of tuples [p1, p2, p3]. Note that
symmetrically, (Temperature↓, ElectricConsumption↑)
is respected by [p3, p2, p1].

Let A = {a1, ..., am} be the set of attributes and DB =
{p1, ..., pn} be a set of tuples over A. The problem of mining
closed frequent gradual itemsets can be represented in our
framework in the following way:

Ground set: E is the set of attributes variations: E =
{a↑1, a

↓
1, ..., a

↑
m, a↓m}.

Dataset: DE is the set of transactions ti,j (for all i, j ∈
[1..n], i 6= j) such that ti,j contains a↑ if pi[a] < pj [a], and a↓

otherwise, for every attribute a ∈ A (p[a] denoting the value
of attribute a for tuple p). Among the transactions of our ex-
ample, t1,2 = {Temperature↑, ElectricConsumption↓}
and t3,4 = {Temperature↑, ElectricConsumption↑}.
Property of interest: G = {av1x1

, ..., avk
xk
} is a pattern if it

is contained in at least ε transactions of DE (where ε is a
given constant) forming a path. A sequence of transactions
[ti1,j1 , ..., tiq,jq] form a path if ∀x ∈ [2, q] ix = jx−1.
(Temperature↑, ElectricConsumption↓) is contained in
the two transactions t1,2 and t2,3 that form a path.
Closure operator: The closure of a pattern P is the intersec-
tion of the transactions in DE [P].
Accessibility: The corresponding set system is independent.
However, avoiding mining symmetrical patterns is crucial for
gaining efficiency. In fact, the problem of mining closed fre-
quent gradual itemsets dealt with in the literature (and in our
experiments) is a variant in which only half of the patterns are
enumerated without loss of information. We have shown that
the associated set system is not independent anymore but is
still strongly accessible (proof omitted due to lack of space).

4.2 Experimental results
Itemsets: In this section, we first present the performance
evaluation of PARAMINER for mining closed frequent item-
sets. The execution times are compared with the state-of-
the-art parallel ad-hoc algorithms PLCM [Negrevergne et al.,
2010] and MT-Closed [Lucchese et al., 2007]. The results are
reported for the sparse dataset BMS-WebView and the dense
dataset Accidents in Figure 1. These two datasets have been
selected from [Goethals, 2003].

The computing platform is based on four Intel Xeon X7560
processor (2.27 GHz) with eight cores, for a total of 32 cores.
Each processor has a shared cache of 24 MB. There is a total
of 64 GB of main memory.

 0.1

 1

 10

 100

 0.02 0.04 0.06 0.08

T
im

e
(s

)

ε / |D| x 100 (minsup %)

Itemset Mining : BMS-WebView

ParaMiner 32 cores
PLCM 32 cores
MT-Closed 32 cores

 1

 10

 100

 1000

 10 20 30 40 50 60 70 80 90

T
im

e
(s

)

ε / |D| x 100 (minsup %)

Itemset Mining : Accidents

ParaMiner 32 cores
PLCM 32 cores
MT-Closed 32 cores

Figure 1: Itemsets

On the sparse dataset, PARAMINER and MT-CLOSED
have very close performance. Performance of PARAMINER
is one order of magnitude slower than PLCM. On the dense
dataset, PARAMINER is between one and two orders of mag-
nitude slower than both PLCM and MT-CLOSED.

PLCM and MT-CLOSED can exploit the problem speci-
ficity by ignoring infrequent elements both in enumera-
tion and for more aggressive dataset reduction. Although
PARAMINER cannot make these assumptions for the sake
of genericity, it still exhibits reasonable run times. It is
worth noticing that for the same datasets, any implementa-
tion of Apriori is two to three orders of magnitude slower
than PARAMINER.

Graphs: The problem of mining closed frequent con-
nected relational graphs is studied in [Yan et al., 2005] but no
free implementation is available. Therefore we only provide
performance results and execution times for PARAMINER.
We use a real gene network dataset with 1000 graphs, each
having 300 genes. The results are presented in Figure 2a.
These results show that PARAMINER can mine this real-
world dataset within minutes, which is enough in practice.

 1

 10

 100

 1000

 10000

 40 50 60 70 80 90 100

T
im

e
(s

)

ε / |D| x 100 (minsup %)

Connected Graph Mining : Hughes-300-1000

ParaMiner 32 cores

 4
 8

 12
 16
 20
 24
 28
 32

 4 8 12 16 20 24 28 32

S
pe

ed
up

cores

ParaMiner : Speedups

Itemsets BMS-WebView 0.02%
Itemsets Accidents 20%
Graphs Hughes 65%
Graduals : C1000-A100 80%
Graduals : I4408 80%

Figure 2: a) Relational graphs b) Speedups

Gradual itemsets: We compare PARAMINER with the
state-of-the-art parallel algorithm PGLCM [Do et al., 2010],
and with PGP-MC [Laurent et al., 2010]. PGP-MC only mines
frequent gradual itemsets (not necessarily closed). We use
two datasets: C1000A100 a synthetic dataset with 1000 tuples
and 100 attributes, and I4408, a real gene expression dataset
with 100 tuples and 4408 attributes. The results are shown in
Figure 3.

 1

 10

 100

 1000

 75 80 85 90 95

T
im

e
(s

)

ε / |DB| x 100 (minsup %)

Gradual Itemset Mining : I4408

ParaMiner
PGLCM
PGP-mc

 10

 100

 1000

 70 75 80 85 90 95

T
im

e
(s

)

ε / |DB| x 100 (minsup %)

Gradual Itemset Mining : I4408

ParaMiner 32 cores

Figure 3: Gradual itemsets

On the synthetic dataset, PARAMINER is one order of
magnitude slower than PGLCM. As expected, with lower
support values, it is more efficient than PGP-MC. On
the real-world dataset, the optimizations implemented in

PARAMINER are crucial to scale up with many attributes.
This allows PARAMINER to be two orders of magnitude
faster than PGLCM that needs more than ten hours of com-
putation and is not represented an Figure 3. For this dataset,
PGP-MC cannot complete due to memory exhaustion.

We show in Figure 2b the speedups for parallel executions
of PARAMINER in the previous experiments. Speedup is de-
fined by the ratio T1/Tp between execution time on one core
(T1) with the execution time on p cores (Tp). Depending
on problems and datasets, the figure presents varied results.
PARAMINER shows better speedups when there are fewer
patterns and each pattern needs complex IntProp compu-
tations. This absorbs the cost of computing reduced datasets.
This is the case when mining gradual itemsets in I4408. On
the other hand, PARAMINER doesn’t scale up as well on syn-
thetic datasets that are typically more regular and thus have
more patterns. Moreover, on simple problems such as mining
closed frequent itemsets, computations for IntProp and Clo
are relatively simple, which means that the delay between the
construction of two reduced matrices is very small. In such
cases, the limiting factor is no longer computing power but
memory bandwidth. The number of core is increasing more
quickly than the memory bandwidth. When a data is not
stored in the cache, the processor has to wait for data transfer
from the memory, leading to lower speedups.

5 Conclusion
We have presented PARAMINER, a generic and parallel algo-
rithm adapted to pattern mining problems corresponding to
strongly accessible underlying set systems. We have shown
that PARAMINER can be used to mine real data with run-
times comparable to state-of-the-art ad-hoc algorithms.

To the best of our knowledge, PARAMINER is the first par-
allel generic pattern mining algorithm. Data Mining Tem-
plate Library (DMTL) [Chaoji et al., 2008] and iZi [Flouvat
et al., 2009] provide implemented generic pattern mining al-
gorithms. DMTL is restricted to properties of interest based
on frequency counting, and is composed of ad-hoc algorithms
to mine itemsets, sequences, trees and graphs. iZi offers more
flexibility in the choice of the property of interest, but cannot
tackle sequences, trees or graphs. The experiments in [Chaoji
et al., 2008; Flouvat et al., 2009] show that both iZi and
DMTL are at least one order of magnitude slower than ad-
hoc algorithms for mining all frequent patterns, for example
efficient implementations of Apriori for itemsets. In contrast,
PARAMINER is two to three orders of magnitude faster than
such ad-hoc algorithms, thus being more than three orders of
magnitude faster than iZi or DMTL.

We plan to improve the parallel performance of
PARAMINER by improving its memory bandwidth usage. We
also plan to handle other pattern mining problems within our
setting (e.g. sequences or trees) in order to provide an Open-
Source package with PARAMINER, properties of interest and
closure operators for most common pattern mining problems.

References
[Agrawal and Srikant, 1994] Rakesh Agrawal and Ramakr-

ishnan Srikant. Fast algorithms for mining association

rules. In VLDB, pages 487–499, 1994.
[Arimura and Uno, 2009] Hiroki Arimura and Takeaki Uno.

Polynomial-delay and polynomial-space algorithms for
mining closed sequences, graphs, and pictures in acces-
sible set systems. In SDM, pages 1087–1098, 2009.

[Ayouni et al., 2010] Sarra Ayouni, Anne Laurent,
Sadok Ben Yahia, and Pascal Poncelet. Mining closed
gradual patterns. In ICAISC, pages 267–274, 2010.

[Boley et al., 2007] Mario Boley, Tamás Horváth, Axel
Poigné, and Stefan Wrobel. Efficient closed pattern min-
ing in strongly accessible set systems. In Mining and
Learning with Graphs (MLG), 2007.

[Boley et al., 2010] Mario Boley, Tamás Horváth, Axel
Poigné, and Stefan Wrobel. Listing closed sets of strongly
accessible set systems with applications to data mining.
Theor. Comput. Sci., 411(3):691–700, 2010.

[Chaoji et al., 2008] Vineet Chaoji, Mohammad Al Hasan,
Saeed Salem, and Mohammed Javeed Zaki. An integrated,
generic approach to pattern mining: data mining template
library. Data Min. Knowl. Discov., 17(3):457–495, 2008.

[Do et al., 2010] Trong Dinh Thac Do, Anne Laurent, and
Alexandre Termier. Pglcm: Efficient parallel mining of
closed frequent gradual itemsets. In ICDM, pages 138–
147, 2010.

[Flouvat et al., 2009] Frédéric Flouvat, Fabien De Marchi,
and Jean-Marc Petit. The izi project: Easy prototyping of
interesting pattern mining algorithms. In PAKDD Work-
shops, pages 1–15, 2009.

[Goethals, 2003] Bart Goethals. Fimi repository website.
http://fimi.cs.helsinki.fi/, 2003.

[Laurent et al., 2010] Anne Laurent, Benjamin Négrevergne,
Nicolas Sicard, and Alexandre Termier. Pgp-mc: Towards
a multicore parallel approach for mining gradual patterns.
In DASFAA (1), pages 78–84, 2010.

[Lucchese et al., 2007] Claudio Lucchese, Salvatore Or-
lando, and Raffaele Perego. Parallel mining of frequent
closed patterns: Harnessing modern computer architec-
tures. In ICDM, pages 242–251, 2007.

[Negrevergne et al., 2010] Benjamin Negrevergne, Alexan-
dre Termier, Jean-Francois Mehaut, and Takeaki Uno. Dis-
covering closed frequent itemsets on multicore: Paralleliz-
ing computations and optimizing memory accesses. In
HPCS, pages 521–528, 2010.

[Pasquier et al., 1999] Nicolas Pasquier, Yves Bastide, Rafik
Taouil, and Lotfi Lakhal. Discovering frequent closed
itemsets for association rules. In ICDT, pages 398–416,
1999.

[Uno et al., 2004] Takeaki Uno, Tatsuya Asai, Yuzo Uchida,
and Hiroki Arimura. An efficient algorithm for enumerat-
ing closed patterns in transaction databases. In Discovery
Science, pages 16–31, 2004.

[Yan et al., 2005] Xifeng Yan, Xianghong Jasmine Zhou,
and Jiawei Han. Mining closed relational graphs with con-
nectivity constraints. In ICDE, pages 357–358, 2005.

	couv_rr_lig_012
	03b
	paraminer

