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Abstract

Evaluation of multiagent systems (MAS) requires a level-up in the analy-
sis method: from the microscopic level of the agents to a macroscopic view of
the MAS activity. Usually the observer collects and analyzes a huge amount
of microscopic data in order to reveal global patterns. By adapting tools from
the distributed systems domain to model MAS execution, and by formalizing
macroscopic observations as consistent aggregations in space and time of the
execution causal structure, we propose a new observation method that di-
rectly provides a macroscopic model of the MAS execution. The approach is
experimentally validated by implementing probes and algorithms to observe
the global behavior of a virtual ant society.

1 Introduction

In most cases, the design of multiagent systems (MAS) focuses on the implementa-
tion of agents behavior, whereas MAS evaluation is more interested in the emergent
behavior of the whole system. A major issue of MAS understanding therefore re-
sides in the level-up of the analysis method: from a local point of view during the
implementation to a global point of view during the evaluation. As regards empi-
rical evaluations, the role of the observation step and its place in relation to the the
level-up is therefore significant.

Traditionally, observation is made before the analysis level-up. In that sense, it
takes place at a microscopic level. For instance, techniques of postmortem moni-
toring, originally used for parallel applications management and that have been
adapted to MAS observation (see MAS-Pajé [Joumaa et al., 2009]), are based on
the collection of countless traces locally produced by the agents. As a second step,
a processing of local data is achieved in order to reveal emergent behaviors (sta-
tistical properties, global patterns, etc.). Other similar examples include the use
of simulation platforms like in [Louie and Carley, 2008]. MAS are first micro-
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scopically modeled, simulated and then observed. Probes and tools provided by
those simulation platforms for the executions analysis lean on a processing of local
observations.

The first difficulty of MAS observation arises from the decentralization and the
asynchronism of common multiagent executions (difficulty 1). Traditional obser-
vation methods try to overcome this difficulty by a postmortem synchronization
of the microscopic traces [Chassin de Kergommeaux et al., 2001]) or by a simu-
lation core. The second difficulty resides in the data processing step allowing the
level-up in the analysis (difficulty 2). Indeed, in order to reveal emergent patterns,
the observer has to review all the microscopic interactions taking place between
the agents. In the worst case, the processing step has to deal with (n2a × n2t ) in-
teractions, where na is the number of agents and nt the number of time steps.
Because of this complexity issue, these methods are not suitable for the analysis
of large-scale distributed applications developed nowadays, for instance for spatial
data handling.

This paper presents a new way of achieving the level-up of MAS analysis. It is
based on the concept of macroscopic observation, i.e. an observation method that
directly produces a macroscopic model of the system execution (see figure 1). It
consists in a reduction of the model complexity in order to facilitate the analysis
and overcome the difficulties 1 and 2. For this purpose, the MAS executions will
be represented by aggregates of space and time that keep enough information to
allow the evaluation.

In section 2, we design a microscopic model of MAS execution derived from
the distributed systems domain. Some domain-related methods for the microscopic
observation of distributed executions are also introduced. Section 3 describes the
formal notion of macroscopic observation as a transformation of MAS execution
models. We focus on a particular kind of model transformations, based on an
aggregation principle in space and time. Section 4 experimentally validates this
observation method with an example interested in the observation of an ant colony.

Figure 1: Macroscopic Observation for MAS Evaluation

2



2 From Distributed Systems to Multi-Agent Systems

Our MAS execution model is grounded on the distributed execution model of
[Mattern, 1989] introduced in section 2.1. Section 2.2 presents previous work
about distributed systems observation and section 2.3 explains how we exploit
Mattern’s model for MAS modeling.

2.1 Preliminaries

A distributed execution model m includes a set of process executions and a set
of message exchanges [Mattern, 1989]. A process execution p can be seen as
an ordered sequence of events (i.e. message emissions, message receptions and
transitions between internal states of the process). This sequence represents the
logical time induced at a local level by the process clock. It defines a total order
on Ep, the set of the process execution events. This local order is marked <p.
The transitive closure of the local orders and the causal relations between emission
events and reception events defines a partial order on Em, the set of all distributed
execution events. This global order is marked <m. It represents the global logical
time of the execution.

A cut c is a set of virtual events that splits the set of execution events into two
subsets: pastc and futurec. A cut c is consistent when the partial order on Em
is maintained between these two subsets: none of the future events is a potential
cause of any past event. Formally, c is consistent if and only if for all e1 ∈ pastc
and e2 ∈ futurec we have e1 6>m e2. Cm is the set of all possible consistent cuts
of m and <Cm is the partial order induced on Cm by <m.

2.2 Previous Work

Several works in the distributed systems literature discuss the difficulties of dis-
tributed execution observation. Some are adapted to very decentralized and asyn-
chronous systems. For instance, the snapshot algorithm provides an efficient
method to observe a system global state without any centralization process nor
synchronization device [Chandy and Lamport, 1985]. This distributed method ex-
ploits the communication channels and the message exchanges in order to spread
the snapshot from process to process and thus to make consistent cuts in the exe-
cution.

Mattern’s work on virtual time [Mattern, 1989] is in the continuation of
[Chandy and Lamport, 1985]. It proposes a distributed representation of time,
evolving according to the communications between processes. It is usually used to
define a global logical clock that can date and order observed events. Such a clock
guarantees that the reconstructed temporal structure of the execution is consistent.

These works provide a strong basis for MAS modeling, mainly because of their
efficiency in the construction of consistent execution models in a decentralized and
asynchronous context. However, these methods keep the modeling at a microscopic
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level. The concept of snapshot indeed provides a microscopic view of the global
state since it records precisely all the local states in space. In the same way, the
virtual time of Mattern gives a microscopic view of event succession in time. In
this paper, we exploit these works to define a method of macroscopic observation
for MAS execution analysis.

2.3 MAS Execution Model

The AEIO design method presented in [Demazeau, 1995] is hereby used to exploit
Mattern’s distributed system model for MAS modeling. The main idea is that the
execution of a MAS can be interpreted as the execution of a particular distributed
system.

• Agent executions are interpreted as process executions. Hence, the local
execution of an agent is described as a sequence of ordered events inducing
a local logical time.

• Interactions between agents are interpreted as message exchanges. Hence,
an interaction is characterized by an emission event and a reception event.
Particular cases of instantaneous interactions are interpreted as synchronous
message exchanges. Agents local times and interactions causality induce, as
in [Mattern, 1989], a global logical time on the MAS execution.

• Environments are fully described by sets of passive agents, i.e. agents whose
internal state cannot autonomously evolve. Such agents are also called arti-
facts in the A&A model of [Viroli and Omicini, 2002].

• Organizations are interpreted as a particular way of looking at the MAS ac-
tivity. In this paper, organizations of MAS are not defined as a priori specifi-
cations that lead the global activity according to predefined design patterns,
but as a posteriori high-level models based on what is actually observed in
the MAS global execution. The next section presents an observation model
that can precisely be used in order to interpret the specific activity of MAS
executions as organizational patterns.

2.3.1 Formalization

We now give our formal definition of MAS execution models.
A MAS execution model m is a pair (Am, Im) where Am is a set of agents

executions – the space of the MAS execution – and Im is a set of interactions
between those agents. Em is the set of all execution events. The application am
associates each event in Em with its location in the agents space Am. <m is the
partial order induced on Em by local times and interactions causality. ‖m is the
relation on E2

m such that e1 ‖m e2 if and only if neither e1 <m e2 nor e1 >m e2.
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In figure 2 the causal structure of execution models are graphically represented
as time diagrams: agents are horizontal lines, events graduations, interactions ar-
rows and consistent cuts dotted lines.

3 Macroscopic Observation

In this section, we formalize the notion of macroscopic observation on the basis
of the MAS execution model previously presented. Subsection 3.1 shows how
the level-up can be formalized as a pertinent aggregation in space and time of the
model logical structure. Subsection 3.2 presents some practical methods to achieve
macroscopic observation through the use of probes and a distributed representation
of time.

3.1 Transformations of MAS Execution Models

We define an observation method as a technical method that associates a MAS
execution model to a real MAS execution. An observation method is microscopic
when the model that it produces contains all the agents and the interactions of the
real execution. It is the case for instance for the snapshot concept which gives at
an instant t the states of all the processes and the communication channels. An
execution model is microscopic when it results from a microscopic observation.

3.1.1 Model Transformations

We define a model transformation T as a triple (m,m′, τ) wherem andm′ are two
MAS execution models – respectively the source model and the transformed model
– and τ is an application from Em to Em′ ∪null. Let H be a subset of Em and H ′

a subset of Em′ .

• T is coherent on H if and only if:

∀(e1, e2) ∈ H2, e1 <m e2 → τ(e1) 6>m′ τ(e2).

• T is complete onH if and only if none of the events inH are associated by τ
with null and if all the interactions within H have an associated interaction
in Im′ .

• T is closed on H ′ if and only if all the events in H ′ have a preimage under τ
and all the interactions within H ′ have an associated interaction in Im.

Let T be coherent and complete on Em and closed on Em′ .

• T is spatially invariant on H if and only if the application a is τ -invariant
on H , i.e. for all (e1, e2) in H2:

am(e1) = am(e2)→ am′(τ(e1)) = am′(τ(e2))

am(e1) 6= am(e2)→ am′(τ(e1)) 6= am′(τ(e2))
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• T is temporally invariant on H if and only if the relations < and ‖ are τ -
invariant on H:

e1 <m e2 → τ(e1) <m′ τ(e2)

e1 ‖m e2 → τ(e1) ‖m′ τ(e2)

• T is spatially aggregative on H if and only if there exists a pair (e1, e2) in
H2 such that:

am(e1) 6= am(e2) and m′(τ(e1)) = am′(τ(e2))

• T is temporally aggregative on H if and only if there exists a pair (e1, e2) in
H2 such that:

e1 <m e2 and τ(e1) ‖m′ τ(e2)

3.1.2 Aggregation Transformations

Let us define an aggregate Eα as a subset of Em. In the continuation of this paper,
we focus on the transformation functions that are:

• Coherent and complete on Em, and closed on Em′

• Spatially and temporally invariant on Em\Eα

• Spatially and/or temporally aggregative on Eα

We call these particular transformations aggregations. They transform the causal
structure of MAS execution by replacing the aggregate with a simpler substructure.
To that extent, aggregations induce a loss of information. Some interactions can
disappear in the transformed model, or else be simplified into a single interaction.
In the same way, the logic space and time are simplified by the aggregations. This
results in a reduction of the model complexity.

In order to better capture these particular transformations, one can distinguish
three kinds of aggregations: spatial (replacing a set of agents with a simpler unique
agent), temporal (replacing intervals between consistent cuts with a simpler unique
cut) or both (composition of former and latter).

3.1.3 Maximal Spatial Aggregation

A maximal spatial aggregation is interpreted as a way of looking at a set of agents
as if they were only one single virtual agent. All events in the set are aggregated
by the transformation T on a unique agent of m′. Interactions between the agents
are not revealed in the transformed model since they are interpreted as an internal
activity of the virtual agent. We say that the set of agents is aggregated by T .
Figure (2.a) presents such a maximal spatial aggregation on the set {a2, a3}.
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Figure 2: Models Aggregations

3.1.4 Maximal Temporal Aggregation

A maximal temporal aggregation should be interpreted as a way of looking at an
interval of the MAS execution time as if it was an atomic step of the execution. All
the events in the interval are aggregated by the transformation T on two consistent
cuts of m′. The multiple interactions that occur inside this interval are not revealed
in details by the macroscopic observation. We say that the interval is aggregated
by T . Figure (2.b) presents such a maximal temporal aggregation on the consistent
cuts c1 and c2.

3.1.5 Macroscopic Models

A macroscopic model is formally defined as the result of an aggregations compo-
sition working on a microscopic model. Indeed, spatial and temporal aggregations
can be composed (see figure 2). Aggregations that are based on disjoint aggregates
can also be composed. Ultimately, an aggregation can be characterized by a group
of spatial and temporal aggregates partitioning the space and the time of the mi-
croscopic model. These partitions are responsible for the reduction of the model
complexity.

A macroscopic observation is a process that associates a macroscopic model
with a real MAS execution without processing any intermediate microscopic
model.
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3.2 Macroscopic Probes and Distributed Representation of Time

An event is located in space and time. From a microscopic point of view, this refers
to the real agent of the MAS to which this event is related and to the global logi-
cal time at which it happens. Hence, during a microscopic observation, observed
events are represented as pairs (agent, time).

In order to implement a macroscopic observation method, a partition of space
and time has to be defined. This partition should be dynamic and it should depend
on the particular emergent behavior one wants to analyze. This is why the aggre-
gation processes presented in this section are dynamical and partly implemented
inside the agents behavior. In opposition to the traditional use of probes and cuts,
the observer is not proactive during the observation process. The MAS is for the
most part responsible for its own observation.

3.2.1 Macroscopic Space

A spatial aggregation can be implemented with a set of macroscopic probes par-
titioning the agents space into groups. We call macroscopic probe an observation
device that interfaces between a group of agents and the observer. Such a device
collects data regarding the local activity of the observed agents. Representations of
events do not specify the precise agent in which they occur, only the group identi-
fier. The events are thereafter recorded as pairs (GROUP, time) and so they are
spatially aggregated according to the macroscopic space of probes. Information
losses affect interactions within the groups.

3.2.2 Macroscopic Time

In a temporal aggregation, the global logical time is partitioned into a set of time
intervals. A cut can be distributedly represented by internal counters in the me-
mory of agents. The representation of events do not specify the precise logical
time at which they occur, but only the macroscopic cut. It is recorded as a pair
(agent, CUT ). Events are then aggregated according to the macroscopic space of
cuts.

In order to guarantee the consistency of the cuts and so the coherence of
the observation, one can adapt the snapshot algorithm in a multiagent context:
during each interaction between agents, the value of the internal cut counter is
also emitted. Thus, the agents synchronize their distributed time representations
according to their causal relations.

Finally, by using the two methods described in this section, an observer can im-
plement an aggregation that is both spatial and temporal. In this case, the recorded
events are represented as pairs (GROUP,CUT ).
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4 Experimentations

Experimentations have been carried out with the MASON environment, libraries
and tools [Luke et al., 2005]. They are specially designed for massive MAS
modeling, such as swarm systems modeling. We have chosen MASON because it
constitutes an especially sound environment for large-scale simulations. However,
we state that our macroscopic observation method could be easily implemented on
a large variety of simulation environments or on real MAS.

The experimentations objective consists in showing that macroscopic obser-
vation responds to the difficulties encountered by traditional observation methods,
regarding (1) the decentralization and the asynchronism of systems and (2) the cost
of the level-up in the MAS analysis.

By ensuring that the implemented functions satisfy our model, we guaran-
tee that the produced execution models will be causally coherent with regards to
the real execution (objective 1). The correctness of the implementation has been
checked by an empiric comparison of our results with the results obtained via a mi-
croscopic approach. However, such an empiric evaluation cannot be generalized as
far as the microscopic observation of large-scale systems is impossible in practice.

Objective 2 resides in a reduction of the model complexity that still keeps the
emergent behaviors legible. It is discussed in section 4.3.

Figure 3: An Ant Colony (200 ants, 2000 steps, 265 100 interactions)
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4.1 Ant Colony Model

The MAS model used in the experimentations is the classical model of ant colonies.
This model is well-known in the MAS community and thereby constitutes a cano-
nical example of emergent behaviors. This section only presents the model briefly.
For a complete description of ant societies simulation, the reader may want to refer
to [Drogoul et al., 1995].

MASON provides its own model of ant colonies called AntsForage. The de-
composition of this model according to the AEIO method [Demazeau, 1995] is
realized as follows:

• Environment is a two dimensional grid including several kinds of areas or
artifacts: ground, obstacles, home and food sources (see figure 3).

• Agents are ants working for the colony (white squares in figure 3) moving
on the grid and interacting with the artifacts. They can be in two states:
looking for food and bringing back food. Each state corresponds to a kind
of pheromone that the ant drops off on the grid in order to respectively point
out its way home or a source of food. When detected, these pheromones are
used by other ants to choose their direction.

• Interactions between ants are thereby resting on the pheromones. An inter-
action is thus characterized by the deposit of some pheromones by one ant at
one time (emission event) and the detection of these pheromones by another
ant at another time (reception event).

• Organization of the colony that we try to observe consists in the creation of
pheromone paths from home to food sources (grey paths in figure 3) and the
back-and-forth of ants on those paths.

4.2 Ant Colony Observation

4.2.1 Microscopic Observation

The microscopic observation of the colony activity consists in implementing a
probe for each ant. All local interactions are recorded as pairs (ant1, time1) →
(ant2, time2). Leaving aside the centralization and synchronization difficulties,
the observer can trace in details the ants movements and produce a microscopic
model of the colony activity. An appropriate data processing can then formally
aggregate parts of this model and give a global view on the execution.

In the worst case, the number of interactions is equal to (n2a×n2t ). For a colony
including 200 ants and a simulation of 2000 time steps the data processing and the
analysis have to deal with 310 000 interactions in average (see section 4.3).
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4.2.2 Macroscopic Space

The purpose of the macroscopic observation is to reduce the space complexity (na)
and the time complexity (nt) of the model in order to facilitate the analysis. Thus,
it can be applied to large-scale MAS.

The first step that reduces the complexity of the observation method consists in
reducing the number of probes. We decide to not observe all the ants behaviors but
to attach probes on the grid at locations of particular interest: the starts, the ends
and the intersections of pheromone paths indicating food sources. These points are
locally detected by the ants. Thus, the whole grid is observed depending on these
particular locations. In figure 3, 5 probes are represented (gray circles).

Each probe defines a spatial aggregate, identified by a group number. This
aggregate is made up of all the ants that have met the probe lastly on their tra-
jectory. Each event transmitted to the observer by a probe is localized with its
group number.Interactions between probes can therefore be defined as follows:
every time an ant meets a probe on the grid, a pair (GROUPlast, timelast) is
locally recorded. It indicates the last probe met by the ant and the time when it did.
Then, the probe sends a pair of events to the observer: (GROUPlast, timelast)→
(GROUPpresent, timepresent). This is interpreted as an interaction between two
probes (last and present). The number of interactions between two probes at a
given time is interpreted as a flow of aggregated activity between two locations on
the grid.

Figure 4: A Macroscopic Model (5 probes, 13 cuts, 139 interactions)
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4.2.3 Macroscopic Time

The second step for implementing a macroscopic observation consists in a reduc-
tion of the time complexity. Each probe and each ant is marked with a counter that
roughly represents the time localization of the agent. This counter indicates the
global cut after which the current activity of the probe (or the ant) is executed.

Probes record the ants local events. When a pair (GROUP,CUT ) is
identical to one that is already recorded, the probe counts the number of
identical pairs. When its cut counter is updated (indicating a new consis-
tent cut), the probe sends the recorded interactions (GROUPlast, CUTlast) →
(GROUPpresent, CUTpresent) and their numbers of occurrences. Hence, the in-
teractions between probes are aggregated into flows of activity according to the
cuts in which they occurred. In figure 4 the lines brightness represents the intensity
of interactions between probes.

Cuts are initiated by particular ants when they interact with particular probes.
In our experiments, a given ant initiates the cuts every time it brings back food to
the home. The execution is synchronized on the come-and-forth of this particular
ant. Probes send data to the observer only when their time counter is incremented.
Thus, the MAS execution gets a global clock that synchronizes the data collection.
In order to propagate the global cut in the colony activity while preserving its
consistency, ants counters are synchronized every time they interact with a probe.
Cuts are consistently propagated thanks to the ants activity on the pheromones
paths as in the notion of distributed snapshot.

4.3 Complexity Reduction

The example in figure 3 shows the execution of a 200-ants colony on MASON.
Figure 4 shows the associated macroscopic model we obtain for a 2000-steps exe-
cution. Because ants movements are randomized, the simulation has been repeated
R = 100 times with the same configuration of the environment. The following
table presents the average number of probes and cuts used in the case of macro-
scopic observation, as well as the average number of observed interactions in both
cases. The right column also presents the average reduction factor associated with
the respective complexity (space, time and interactions).

Microscopic Macroscopic Factorobservation observation

Space (na) 200 ants 6.7 probes 33

Time (nt) 2000 steps 18 cuts 110

Interactions 3.1× 105 interactions 2.4× 102 interactions 1700

12



The complexity of the execution space and time is reduced thanks to the macro-
scopic observation. The observer needs to implement 33 times less probes in ave-
rage than with a microscopic observation method. The number of synchronizations
between the probes and the observer (in order to transmit data) is 110 times less.
For these reasons, macroscopic observation is much easier to achieve than micro-
scopic one.

More importantly, the microscopic observation has to deal with about
310 000 interactions to reveal the MAS emergent behaviors. With 1700 times
less recorded interactions, the macroscopic observation can still render an account
of the MAS dynamics. Indeed, figure 4 represents the evolution of activity flows
between grid locations during time intervals. This information allows us to reveal
the global behaviors that we wanted to observe: (1) the creation of pheromone
paths between the home and the sources of food and (2) the come-and-forth fre-
quency of the ants on those paths. To conclude, with much less information re-
trieval, and without any postmortem data processing, the macroscopic observation
can still participate in the analysis of MAS executions.

Other experimentations show that the gain in interactions complexity increases
with the size of the MAS execution. For a 1000-ants colony and a 10 000-steps
execution (onR = 100 simulations) the number of observed interactions is divided
by 3100 in average. These experimentations finally show that the complexity gain
is not only related to the system size, but mostly to the complexity (e.g. number
and configuration of the food sources and the obstacles) of the problem the system
has to solve.

5 Conclusion and Perspectives

In this paper, MAS execution models have been formalized as causal structures
between events localized in space and time. A macroscopic observation method
generates a model such that substructures of space and time are aggregated and
simplified with regard to the microscopic model. Consistency of generated models
is maintained during the aggregation in order to produce a coherent image of the
execution.

The presented method has been validated by experimentations interested in
the observation of an ant colony. Probes and distributed representations of time
are used to significantly reduce the spatial and temporal complexity of the model.
In that way, we overcome problems related to MAS decentralization and asyn-
chronism that make the microscopic observation difficult (overcoming of the dif-
ficulty 1). Ultimately, the global behavior of the system is properly presented as
flows of activity between particular points of interest in the MAS environment.
These flow are stretched over consistent time intervals. No data processing is
needed to get this macroscopic model, hence the cost for analyzing emergent be-
haviors is radically reduced (overcoming of the difficulty 2). To go further, the case
of open MAS, for which space size is variable, will be handled in the future. We
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believe that the work of [Fidge, 1991] on variable-size distributed systems can be
exploited to use our method in a highly dynamic context.

To conclude, the observation method we designed contributes to the evalua-
tion of large-scale multiagent systems. Where traditional observation methods fail
to reveal emergent behaviors, because of the cost of data processing, this new ap-
proach will allow, in the future, to see for example what has never been seen before
in the case of large-scale executions: the observation and the analysis of MAS in-
cluding a million agents and operating on a long-life term. We believe that this
important issue for the future of the multiagent domain can only be handled by a
macroscopic approach like ours.
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