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Software testing is costly in terms of time and funds. Testability is a software characteristic

that aims at producing systems easy to test. Several metrics have been proposed to identify the
testability weaknesses. But it is sometimes difficult to be convinced that those metrics are really

related with testability. This article is a critical survey of the source-code based metrics proposed

in the literature for object-oriented software testability. It underlines the necessity to provide
testability metrics that are proved to be intuitive and adequate for the testing cost prediction.

Categories and Subject Descriptors: D.2.8 [Software Engineering]: Metrics

General Terms: Measurement
Additional Key Words and Phrases: software testing; software testability; testability evaluation;

source-code based metrics; object oriented program analysis

1. INTRODUCTION

Software testing is the process of executing a program with the intent of finding
errors [Myers 1979]. It has emerged as one of the major techniques to evaluate the
implementation reliability. Unfortunately, testing is usually an expensive process.
It can represent more than 40% of the total cost of the software development [Salem
et al. 2004]. For this reason, being able to characterize and to produce systems
easy to test (i.e. testable systems) has become a preoccupation more and more
important.

Testability denotes the ability of a system to be tested. Originally, testability was
defined for hardware components. In this context, testability is often characterized
through observability and controllability. To test a (hardware) component, one
must be able to control its inputs and observe its outputs. When a component is
embedded, the presence of other components can make impossible to directly access
to its inputs and outputs. The additional effort required to build test for the em-
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bedded component partly depends on the architectural design. This is represented
by the controllability and the observability.

For software systems, the notion of testability is becoming more and more popular
because test is one of the most used way to valid a system and it is an (very)
expensive process. Several studies were carried out to identify software testability
characteristics. For instance, controllability and observability have been adapted
for software programs, and several specific definitions of software testability were
proposed. In [Bache and Mullerburg 1990], testability is defined as the effort needed
for testing. For Binder, testability is the relative ease and expense of revealing
software faults [Binder 1994]. Other definitions allow a quantitative evaluation of
the testing effort. For IEEE, it is also considered as “the degree to which a system or
component facilitates the establishment of test criteria and the performance of tests
to determine whether those criteria have been met” [of Electrical and Engineers
1990]. In [Bertolino and Strigini 1996], the testability is the probability that a test
of the program on an input drawn from a specified probability distribution of the
input is rejected, given a specified oracle and given that the program is faulty. In
other words, it is the probability to observe an error at the next execution if there
is a fault in the program.

From these definitions, lots of metrics have been proposed for software testability
evaluation. These metrics can be evaluated at different moment in the development
phase (i.e. model or code). They evaluate the complexity or the scope of testing, or
both [Binder 1994]. The scope evaluates how many test cases have to be produced.
The complexity indicates how much it is difficult to produce a test. For some cases,
lots of test cases may be required, but it could be easy to identify them; or few
tests may be required but it could be very difficult to design them.

Most of these metrics focus on source code analysis. The main reason is that
testability is often evaluated at this level in the industry. It is not done for im-
provement purposes: it is too late (and thus too expensive) to deeply modify the
system and thus its testability. Evaluating testability at the source code level is
mainly done for planning and resource management. Moreover, in industry, the
source code is often the first artefact enough formal to make possible an automatic
analysis.

For this reason, our article provides a survey of the proposed source-based testa-
bility metrics. We focus on for object-oriented systems. This work is an extension
of the survey proposed by Binder in [Binder 1994]. It presents more than 40 metrics
which were declared in the literature to be testability relevant. The reason why
there are so many metrics is that there are many strategies for test data selec-
tion/generation. Test data selection is based on the code or on the specification, at
different phases (unit, integration and system testing), and with different purposes
(among which achieving different coverage criteria). Moreover, there are different
ways to understand what the cost of testing is. For instance, it can be the number of
test cases, the size of test cases, the number of stubs, or the time spent to produce
the tests.

Surprisingly, few metrics were really usable for testability evaluation. Some of
them are hardly computable. Few are included in case tools. And few studies
did formal or experimental validation that these metrics represent the scope or the
ACM Transactions on Computational Logic, Vol. , No. , 20.
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complexity of the test.
In the following, we first present scope-oriented metrics (section 2). Sections 3,

4 and 5 focus on complexity metrics. Section 4 is dedicated to observability and
controllability related metrics, and metrics presented in section 5 are related to the
probability to reveal the next error. Section 6 focuses on works carried out for
validating testability metrics. Section 7 concludes and draws some perspectives.

2. SCOPE-ORIENTED TESTABILITY METRICS

2.1 Methods

Methods may be considered separately during unit-testing. Several sets of criteria
defined for non object-oriented programs can then be used. They are generally
defined with respect to the control-flow graph or the data-flow graphs [Myers 1979;
Binder 1999; Gu et al. 1994; Ntafos 1988; Frankl and Weyuker 1988]. Classical
control-flow graph criteria are statement, branch or decision, condition, MC/DC
(Modified Condition/Decision Coverage), path. For data-flow graph, classical cri-
teria are all-paths, all-du-paths, all-uses, all-c-uses, all-defs-uses, all-p-uses .

In [Bache and Mullerburg 1990] and [Yeh and Lin 1998], two families of metrics
have been proposed to evaluate the number of elements which has to be covered with
respect to the control-flow and data-flow graph testing strategies : respectively all-
paths, visit-each-loop-paths, simple paths, structured, branches, statements, and
p-uses, defs, uses, d-u-paths and dominating paths. By definition, those metrics
predict the scope of the associated testing strategies, i.e the minimum number of
required tests to reach the coverage criteria.

Similarly, the Cyclomatic Complexity (CC), named also McCabe’s complexity,
[McCabe 1976; J. and W. 1989; Watson and McCabe 1996] is equal to the number
of decision statements (or individual conditions) plus one. Mathematical analysis
has shown that CC gives the recommended number of tests needed to test every
decision point in a program [Watson and McCabe 1996]. Thus, it predicts the scope
of the branch coverage testing strategy.

In [Bainbridge 1994], two flow graph metrics were defined axiomatically: Number
of Trails metric which represents the number of unique simple paths through a
flowgraph (path with no repeated nodes), and Mask [k=2] metric, which stands
for “MAximal Set of K-Walks”, where a k-walk is a walk through a flowgraph
that visits no node of the flowgraph more than k times. Mask reflects a sequence
of increasingly exhaustive loop-testing strategies. These two metrics measure the
structural complexity of the code. One of the main benefits of defining these testa-
bility metrics axiomatically is that flowgraphs can be measured easily and efficiently
with tools such as QUALMS [Bainbridge 1994].

2.2 Classes

The class is an essential concept in object oriented programming. A class groups
attributes of an object and the operations on these attributes. Classes can also be
considered during unit-testing.

Weighted Methods per Class (WMC) metric belongs to the Chidamber and Ke-
merer OO metrics suite [Chidamber and Kemerer 1994]. For a class C with methods
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M1,M2...Mn, let c1, c2, .., cn be the complexity of these methods.

WMC =
i=n∑
i=1

ci

Complexity was deliberately not defined in the original paper in order to allow
a general application of this metric. If all method complexities are considered to
be unity, then WMC1 = n represents the number of methods. WMC1 can be
used to evaluate the number of test cases to achieve the method coverage [Binder
1994]. This criterion is one of the simplest OO code-coverage coverage criteria
(corresponding to function coverage). It requires each method to be executed at
least once. A similar metric to WMC1 is Number Of Methods (NOM) representing
explicitly the number of methods of a class [Binder 1994].

When cyclomatic complexity is used as complexity measure to compute WMC
(WMCCC), it evaluates the number of the test cases required to test all the meth-
ods of the class to reach the decision coverage criteria.

2.3 Stubs

Stubs may be required during unit or integration testing. A stub is an extra routine
that is provided by the tester, to imitate another part of the system.

The Fan Out (FOUT) of method A is the number of local flows from method A
plus the number of data structures which A updates [Henry and Kafura 1981]. In
other words FOUT estimates the number of methods to be stubbed, to carry out a
unit testing of method A

Binder proposes to use Response For Class (RFC) metric to evaluate how many
stubs has to be produced for unit testing at class level [Binder 1994]. RFC is
one of the Chidamber and Kemerer metrics suite [Chidamber and Kemerer 1994].
It is defined as the count of the methods defined in a class, in addition to the
methods that are called directly by a method of this class. The number of methods
to be stubbed corresponds to the number of calls of methods defined outside the
class/subsystem under test. Since RFC counts also the number of methods defined
within the class, RFC only provides an approximation of the number of methods to
be stubbed, to carry out a unit testing of a class.

RFC = |RS| where RS = {M} ∪∀i {Ri}

where {Ri} is the set of methods called by method i, and {M} is a set of all meth-
ods in the class.

A class is coupled to another if one of them acts on the other, i.e. a method of a
class uses methods or instance variables of the other. There are several definitions
for the coupling between objects. One of them was proposed by Chidamber and
Kemerer in [Chidamber and Kemerer 1994]: Coupling Between Objects (CBO) of
a class is the number of other classes to which it is coupled. CBO can be used to
evaluate the number of classes to be stubbed, in order to carry out a unit testing
ACM Transactions on Computational Logic, Vol. , No. , 20.



Source code metrics for OO system testability · 5

of a class [Binder 1994].
Eight different levels of coupling were ordered by Jones [Page-Jones 1988]. These
levels influence the different quality factors of a unit such as reusability, maintain-
ability, understandability...etc. An extension to these levels was made to become
12 levels [Jin and Offutt 1998]. These levels evaluate the software system designs
complexity, and a relatioship between these levels and the number of faults [Troy
and Zweben 1993].

Class Fan Out (Class FOUT) represents the number of classes on which a given
class depends [Schroeder 1999]. This metric could be used to estimate the number
of classes to be stubbed.
When some strategies are used to schedule intelligently the test of the different
classes in order to decrease the number of subs required to be produced, CBO
or Class FOUT may be not relevant. In [Kung et al. 1995], authors show that
400 stubs would be required to test 122 classes individually (without any strategy)
against 8 when an optimal test order is used. In [Jungmayr 2002], S. Jungmayr
proposes a testability metric in the context of static dependencies within object-
oriented systems. A dependency of a component A on a component B exists if
A requires B to compile or to function correctly. If A inherits from B or if it
uses method(s) or attribute(s) of B then A depends on B. Dependency relation
is transitive. A dependency graph may contain cycles. Such cycles can be bro-
ken by removing some dependencies. The set of removed dependencies are called
Feedback Dependency Set.

Number of Stubs needed to Break Cycles (NSBC) evaluates the number of stubs
required to be built with an integration testing strategy.

NSBC = |CFb|

where C is the set of all components, CFb a feedback component set (CFb ⊂ D),
and D is the set of all dependencies. Finding a smallest feedback component set is
NP-complete. To identify a small feedback component set S. Jungmayr proposed
an algorithm based on both Tarjan and greedy algorithms [Jungmayr 2002].

2.4 Inheritance

Inheritance is one of the main features of object-oriented programming paradigm.
Since it has been demonstrated that inheritance may be abused in many ways [Arm-
strong and Mitchell 1994], one may expect that several testing criteria would have
been dedicated to inheritance testing. Surprisingly, few testing methods/criteria
deal with inheritance [Harrold et al. 1992; Perry and Kaiser 1990; Cheatham and
Mellinger 1990; Fiedler 1989; Chung et al. 1997]. Most of them restrict testing to
validate changes in the inherited features (methods and attributes).

In [Binder 1999], all inherited methods should be retested. In [Harrold et al.
1992; Perry and Kaiser 1990; Cheatham and Mellinger 1990; Fiedler 1989], it is sug-
gested to re-test only (modified) inherited features (attributes or methods). Since,
the number of inherited methods is considered to be generally proportional to the
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Depth of Inheritance Tree (DIT) [Chidamber and Kemerer 1994; Binder 1994], DIT
is considered as a way to estimate the testing effort. But it does not provide an
estimation of how many test cases have to be produced [Shaheen and du Bousquet
2008]. A class with a small inheritance tree may have more inherited methods than
a class with a large inheritance tree.

When a class inherits the same property of an ancestor via multiple paths in
the hierarchy, there is repeated inheritance. Repeated inheritance is not allowed
in several OO languages, such as Java, C#, or VB .Net. Overuse of repeated
inheritance increases software error [Chung et al. 1997]. That’s why C.-M. Chung et
al. propose a testing method to search for errors caused by the repeated inheritance.
Each class concerned by repeated inheritance has to be tested in the context of its
inheritance sub-trees.
Authors introduce the notion of URI (Unit Repeated Inheritance) as a specific
inheritance sub-graph, where the number of nodes equals the number of edges
(G = (V,E) where |V | = |E|). Repeated inheritance tree can be decomposed as a
set of basic URIs. For an inheritance tree, let t be the number of terminal classes
(classes with no out-edges) and Ui be the set of URI related to the terminal class i.
The complexity of the repeated inheritance is defined as | ∪t

i=1 Ui|. This complexity
corresponds to the number of repeated inheritance sub-tree to be examined. Here
again, it does not predict how many test cases have to be produced for each of
them.

3. GENERAL COMPLEXITY METRICS

As we have seen previously, the Cyclomatic Complexity (CC) gives the recom-
mended number of tests needed to test every decision point in a program [Watson
and McCabe 1996]. Thus, it predicts the scope of the branch coverage testing strat-
egy. It is also considered as an indication of the complexity of testing. Indeed, a
method with a CC greater than 50 is considered to be untestable 1.
By extension, WMCCC could also be considered as an indication how difficult
it is to test the class. However, it could be difficult to interpret: WMCCC in-
dicates that a class A with 60 very simple methods (ci = 1) will require more
testing than a class B with one method having a complexity of 50. When an-
alyzing CC for each method, B will be more difficult to test (since a method
with a complexity of 50 is supposed to be untestable) and 60 simple methods
will require 60 simple tests. The authors in [Michura and Capretz 2005] pro-
poses to use WMCCC with three other metrics: Mean Method Complexity (MMC),
Standard Deviation Method Complexity (SDMC) and Number of Trivial Methods (NTM).
Using the 4 metrics as opposed to WMCCC alone allows distinguishing between cer-
tain types of classes and therefore interprets the results accordingly.

3.1 Cohesion

Cohesion is an extension to the definition of similarity which was proposed by Bunge
[Chidamber and Kemerer 1994]. The similarity σ() of two things is the intersection

1http://www.sei.cmu.edu/str/descriptions/cyclomatic_body.html
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of the sets of properties of the two things.

σ(X,Y ) = P (X) ∩ P (Y )

Cohesion has been considered to be a factor influence the cost of testing [Chi-
damber and Kemerer 1994]. Having lack of cohesion in a class C means that this
class has many functionalities which are not related to each other, and as a result
the class C will behave in less predictable way than a class of a fewer functionalities.

Lack of Cohesion of a Method (LCOM) is the 6th measure of the Chidamber and
Kemerer metrics suite [Chidamber and Kemerer 1994]. LCOM measures the de-
gree of similarity between the class’s methods. The more methods share the same
attributes, the larger is cohesion. LCOM metric has been redefined several times
[Briand et al. 1998]. We give here the definition of LCOM4, given by Hitz and
Montazer. Let Gx = (V,E) be a graph representing calls between class methods.
V is the set of vertices, which represents the method names. E is the set of edges.
E = {(m,n) ∈ V × V |∃i ∈ Ix : (m accesses i) ∧(n accesses i) ∧ (m calls n) ∧ (n
calls m)} where Ix is the set of the attributes. LCOM4 = |E|
LCOM has been proposed as a testability metric by Binder in [Binder 1994], be-
cause high LCOM means more states that have to be tested to prove the absence
of side effect among the methods.

Tight Class Cohesion (TCC) is the percentage of pairs of public methods of the
class which are directly connected [Bieman and Kang 1995].

TCC = NDC/NP where NP = N ∗ (N − 1)/2

where:

—N the number of methods
—NP represents the number of possible connections
—NDC number of indirect connections

Loose Class Cohesion (LCC) considers the pairs connected directly or indirectly
[Bieman and Kang 1995].

LCC = (NDC +NIC)/NP

where NIC represents the number of indirect connections.

Information CoHesion (ICH) was proposed by Lee et al. [Lee et al. 1995]. It is
based on the information flow. It considers the cohesion of a methodm implemented
in a class c as the number of the invocations to other non-inherited methods of class
c, weighted by the number of the parameters of the invoked methods. Cohesion
between calling and called methods is stronger if the latter has more parameters
more information is passed.

Most Cohesive Component (MCC) is introduced in [Seok Chae and Rae Kwon
1998] as the most cohesive form if each class’s method has interaction with all of
instance variables (special methods such as set and get are excluded).

ACM Transactions on Computational Logic, Vol. , No. , 20.
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3.2 Polymorphism

It is an important feature in OO programming, defined as a characteristic of being
able to have multiple forms. To test software that uses polymorphism, one should
test all possible bindings of receiver classes and target methods at different call
points. The authors in [Lin and Huang 1998] define a testability of polymorphism
metric in inheritance hierarchy, based on the descendant paths.
Also a polymorphism factor (PF or POF) was defined to represent the actual num-
ber of possible different polymorphic situations[e Abreu and Melo 1996]. A very
high POF value (above 10%) will reduce the benefits of polymorphism.

Other metrics have been proposed in [Binder 1994] to measure the complexity
as a result of the polymorphism such as percent of Dynamic calls (DYN), percent of
non-over loaded calls (OVR), number of yo-yo paths visible to CUT (Bounce-C), and
number of yo-yo paths in SUT (Bounce-S). Although these metrics have not been
evaluated [Binder 1994], they were proposed as an indicator of the opportunities
for faults.

3.3 Inheritance

Inheritance influences the scope of testing as previously indicated. Binder indicates
that it also influences the complexity of testing. Like DIT, several other measures
were proposed for inheritance tree complexity evaluation. Class Fan-In (FIN) is
the number of parent classes of a subclass. It is applied only in multiple inher-
itance languages. A high Class FIN value increases the possibility of incorrect
bindings [Binder 1994].

Number Of Children (NOC) is the number of classes that inherit directly from
a class [Chidamber and Kemerer 1994]. It is the number of immediate subclasses
subordinated to a class in the class hierarchy. It indicates how many derived classes
will be affected by some modification in the parent class. So if a modification in
the parent class affects the derived classes, it is required to retest the methods in
the children. The higher NOC is, the more tests should be produced.

In [Brito E Abreu and Carapua 1994], authors propose a set of measures called
MOOD set, for object-oriented design quality evaluation. This set includes Method
Inheritance Factor (MIF) and Attribute Inheritance Factor (AIF). They compute
the number of the inherited methods/attributes in all classes divided by the number
of available methods/attributes (inherited and defined) for all classes. Those factors
are defined to evaluate the inheritance complexity of the whole system. They could
be adapted to evaluate MIF and the AIF for each class (instead of for all classes
together).

3.4 Encapsulation

Encapsulation is defined as “a software development technique that consists of iso-
lating a system function or a set of data and operations on those data within
a module and providing precise specifications for the module” [IEE 1990]. Us-
ing the encapsulation makes private data inaccessible directly during testing. An
encapsulation factor (EF) metric for a class was proposed to measure the encap-
sulation level of a class. EF was defined as a function of two parameters privacy
and unity, where privacy is based on the private data members (the data visibility),
ACM Transactions on Computational Logic, Vol. , No. , 20.
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and unity is the cohesion between the attributes and methods [Saini and Aggarwal
2007].

4. COMPLEXITY METRICS RELATED TO OBSERVABILITY AND CONTROLLA-
BILITY

Originally, testability was defined for hardware components. In this context, testa-
bility is often characterized through observability and controllability. To test a
component, one must be able to control its inputs and observe its outputs. When
a component is embedded, its controllability and observability can be decreased.
This partly depends on the architectural design. Observability and controllability
notions were adapted from hardware to software systems.

4.1 Domain Testability

Two Domain Testability metrics have been proposed by Freedman for non-OO soft-
ware and based on these concepts [Freedman 1991]. A procedure F is observable
if distinct outputs are generated from distinct inputs, and an expression procedure
F is controllable if the set of all evaluations of F covers all values in the range (co-
domain of F ). Observability and controllability extensions are the input/output
variables required to achieve the definitions of observability and controllability.
The observability (Ob) and the controllability (Ct) according to the domain size of
the added inputs/outputs.

Ob = log2(|ID1| ∗ .... ∗ |IDn|)

Ct = log2(|OD1| ∗ .... ∗ |ODm|)

where IDi is the domain of the ith added input and ODj is the domain of the jth
added output.
A limit of these metrics is that the cardinality of certain types cannot be calculated
(i.e. vector, array, object, etc). Moreover, one important feature in object-oriented
paradigm is that objects preserve states. So attributes could be used as implicit
input/output for a method. Therefore, the notion of observability an controllability
extensions have to be adapted to OO features.

4.2 Observability and Controllability of Component

In [Washizaki et al. 2003], five metrics were proposed as reusability measure of
software component. Two of them are related to observability and one to control-
lability. The Rate of Component Observability (RCO) represents the percentage of
readable attributes in all fields implemented within the Façade class of a compo-
nent. If the value of RCO is in [0.17, 0.42] (confidence interval) the height of the
observability is supposed to be appropriate [Washizaki et al. 2003]. It is a variation
of percent Public And Protected (PAP) defined in [Binder 1994].

RCO(c) = Pr(c)/A(c) when(A(c) > 0), 0 otherwise

where Pr(c) is the number of readable properties in the component c, and A(c) is
the number of fields in c’s Façade class.

ACM Transactions on Computational Logic, Vol. , No. , 20.
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The Self-Completeness of Component’s Return value (SCCr) is the percentage of
business methods without any return value in all business methods implemented
within a component c. It can be extended to non business methods and allows
to detect the absence of return values, which decreases observability. However,
observability is not limited to the existence of return values.

SCCr(c) = Bv(c)/B(c) when(B(c) > 0), 1 otherwise

where Bv(c) is the number of business methods without return value in c, and B(c)
the number of all business methods in c.

The Self completeness of component’s parameter (SCCp) is the percentage of busi-
ness methods without any parameters in all business methods implemented within
a component c. SCCp can be extended to other application layers (i.e. non business
methods). Since it can be easier to test methods which have no input parameter
(see Category and Partition [Ntafos 1998]), classes with high SCCp may be easier
to test than some with low SCCp. One limit of SCCp is that it is independent from
the difficulty to test methods with parameters. Let A be a class of several methods
each of them has one parameter, (SCCp(A) = 0). Let B be a class of two methods,
one with several methods and the other without any parameter, (SCCp(B) > 0).
A is probably easier to test than B. Moreover SCCp does not capture the situation
where methods have implicit parameters (attributes).

SCCp(c) = Bp(c)/B(c) when(B(c) > 0), 1 otherwise

where Bp is the number of business methods without parameters in c.

4.3 System Testability - STA

System Testability (STA) of an object-oriented software is defined as mathematical
mean of all the objects testability obtained in the system [Wang et al. 1997].

STA =
1
n

m∑
j=1

OTAj

where OTAj is the object testability defined as the product of its test controllability
and observability. Controllability of an object is the ability to control all the basic
control structures within the object. Observability of an object is the ability to
indicate the values of any variables within the path(s) sensitised by the current test
case.
STA is the average of its component testability values. This definition does not take
into account the architecture of the system, which is quite unusual. It is usually
expected that the architecture influences the observability and the controllability.

5. TESTABILITY METRICS RELATED TO ERROR LIKELIHOOD

Testing aims at finding errors [Myers 1979]. The easier it is to find errors, the
easier testing is. One definition of software testability given by A. Bertolino is
“the probability that a test of the program on an input drawn from a specified
probability distribution of the input is rejected, given a specified oracle and given
that the program is faulty” [Bertolino and Strigini 1996]. In other words, it is
the probability to observe an error at the next execution if there is a fault in the
program. Several metrics are related to this definition.
ACM Transactions on Computational Logic, Vol. , No. , 20.



Source code metrics for OO system testability · 11

5.1 Propagation Infection Execution - PIE

Propagation Infection Execution (PIE) analysis is a well-known metric proposed for
testability. It has been proposed by Voas [Voas 1992; Voas and Miller 1995]. PIE
measure aims at computing the sensitivity of individual locations in a program.
The sensitivity of a program location refers to the minimum likelihood that a fault
at that location will produce incorrect output, under a specified input distribution.
This measure has its origin in the RELAY model used for error detection [Morell
1990]. It relies on the fact that for discovering a fault in a program, three conditions
should be met. First the statement that contains the fault should be executed.
Secondly the state of the variable should be infected. And at last, it should be
propagated to an output.
Testability of a software statement T (s) = Re(s) ∗ Ri(s) ∗ Rp(s) where Re(s) is
the probability of the statement execution, Ri(s) the probability of internal state
infection and Rp(s) the probability of error propagation.
PIE analysis determines the probability of each fault to be revealed. PIE original
metric requires sophisticated calculations. It does not cover object-oriented features
such as encapsulation, inheritance, polymorphism, etc.
In [Lo and Shi 1998], authors propose an adaptation of PIE analysis to compute
the testability of a class t(C). Based on t(C), the testability of the class is derived
with respect to different factors: cohesion, communication and inheritance.

5.2 Domain-Range Ratio - DRR and Visibility Component - VC

A simplification of sensitivity analysis has been proposed with the Domain-Range
Ratio (DRR). DRR of a specification is the ratio between the cardinality of the
domain to the cardinality of the range. DRR depends only on the number of val-
ues in the domain and the range, not on the relative probabilities that individual
elements may appear in these sets [Voas and Miller 1993].
For a program, when the input domain is larger than the output domain, infor-
mation about the internal states may not be communicated in the outputs. This
information may have included evidence that internal states were incorrect. This
loss suggest a lower testability.
For instance, let us consider two functions F (x) = x mod 2 and G(x) = 2 ∗ x. F
has a domain on all R and a range on {0,1}. For such function, it is difficult to
predict if the result is really the one that corresponds exactly to the given input:
it has an unlimited and infinite set of inputs produce the same result (output). G
has a domain on all R, and the range also on all R. Any two different inputs will
produce two different outputs. Detecting an error for G(x) is easier than detecting
an error on F (x).
DRR evaluates how much an application is supposed to hide faults. It is a priori
information, which can be considered as a rough approximation of testability.

J. McGregor and S. Srinivas proposed an extension of DRR for object-oriented
programs called Visibility Component (VC) [McGregor and Srinivas 1996]. VC
is the cardinality of possible outputs (including the exceptions) divided by the
cardinality of possible inputs. Two types of parameters for a method are considered:
implicit and explicit ones.
Like domain testability measures, cardinality of certain types cannot be calculated
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(i.e. vector, array, object, etc) by DRR or VC. This is major drawback makes
impossible to use DRR or VC practically.

6. VALIDATION OF THE METRICS

In [Kaner and Bond 2004], C. Kaner and W.P. Bond question the construct validity
of software engineering metrics, as several other authors before them. The general
question is “how we know that we are measuring the attribute that we think we are
measuring?” Same question can be asked for all the metrics presented here: how
we know that those metrics really correspond to testability?

Several frameworks or methodologies were proposed in the literature for mea-
surement and metrics validation [237 1993; Kitchenham et al. 1995; Sheppard and
Kaufman 2001; Schneidewind 1992; Mendonça and Basili 2000; Harrison et al.
1998; Weyuker 1988]. Among them, the standard IEEE 1061 [237 1993] proposes a
methodology to define metrics where the fifth step is Validation. Predictive metrics
results are compared to the direct metrics results to determine whether the predictive
metrics accurately measure their associated quality factor. Moreover, the standard
lays out six validation criteria: correlation, tracking, consistency, predictability,
discriminative power and reliability. Another draft standard for testability and
diagnosability characteristics and metrics was developed by (D&MC), a subcom-
mittee of IEEE [Sheppard and Kaufman 2001], the purpose of this standard was
to provide formal and unambiguous definition of testability, where this definition
should be independent of specific test, diagnosis process and system under test.

In [Mouchawrab et al. 2005], the authors introduced a generic measurement
framework for OO software testability, which is based on a theory expressed as
a set of operational hypotheses. They identified 20 hypotheses, 4 of these hypothe-
ses are related to inheritance concept (i.e inherited features, operation rule...etc),
which could be identified, more or less, as a result of the metric DIT. Other hy-
potheses are related to number of paths, coupling, dependency cycles, cohesion,
complexity of pre/post conditions and invariants...etc. Although this framework
is introduced for a high level design, the most of these hypotheses correspond to
certain metrics presented in Table I. A future work could be done to associate
formally these hypotheses to existed metrics.

A large amount of empirical studies have been carried out to establish the relation
between OO metrics and fault-proneness of classes [Basili et al. 1996; Briand et al.
1999; Tang et al. 1999; Briand et al. 2000; Briand et al. 2001; Emam et al. 2001; Yu
et al. 2002; Gyimóthy et al. 2005; Zhou and Leung 2006]. Classical metrics such as
WMC, LCOM, DIT, RFC, and CBO were considerate. But the studies were not
correlated to testability.
In [Bruntink and van Deursen 2006], authors have evaluated the correlation between
a set of OO source code metrics (among which DIT) and their capabilities to predict
the effort needed for testing, expressed as dLOCC (Lines Of Code for Class) and
dNOTC (Number of Test Cases). Somewhat surprisingly, DIT was not correlated
to dNOTC. This was explained by the fact that inherited methods were probably
not systematically re-tested. However, if all inherited methods are re-tested, it was
expected that the number of test cases should increase with respect to DIT, as it
has been shown after in [Shaheen and du Bousquet 2008].
ACM Transactions on Computational Logic, Vol. , No. , 20.
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The validation of testability is a hard work, especially for the complexity met-
rics. The main difficulty relies on the fact that the effort to test is subjective and
depends on the point of view. For instance, let us consider the Rate of Component
Observability (RCO) [Washizaki et al. 2003] and the percent Public And Protected
(PAP) [Binder 1994]. They both represent the percentage of readable attributes,
but are used differently with respect to the testability analysis: if a high RCO is
supposed to ease testing because observability is increased [Washizaki et al. 2003],
a high PAP is supposed to increase the difficulty of testing, because there are more
opportunities for side effects. A challenge is thus to propose some definition(s) for
what could be the effort to test.

The validation of scope metrics seems to be easier. By definition, scope metrics
predict the number of tests to produce with respect to a testing approach (see Table
I). To validate those metrics empirically, one can compare the expected number
of test cases given by the metric and the effective one when applying the testing
method. The possible differences can be due to the impossibility to reach the
associated coverage criteria because of the infeasible execution paths for instance.
If empirically, a scope metric prediction is very different from the effective number
of test cases, it may be error-prone and thus should not be used.

7. CONCLUSION AND PERSPECTIVES

Since testing is expensive, predicting testability is important to organize test and/or
to build easy-to-test systems. However, software testability is a concept difficult
to capture and formalize. Lots of factors can effect testability [Mouchawrab et al.
2005; Binder 1994]. Lots of metrics have been proposed to predict testability, and
especially at the source code level. Evaluating testability at the source-code level
helps testers to detect parts of the system supposed to be difficult to test. It allows
organizing and planning testing work

In this paper, we have collected more than 40 metrics, classified in scope and
complexity testability metrics. Scope metrics predict how many tests cases are
required by some testing strategies. Complexity metrics predict how difficult it will
be to generate test cases. The complexity can be evaluated with respect to the
structure of the system, the observability and the controllability attributes, or the
probability to find the next error. Our work is an extension of the one done by
Binder in [Binder 1994], which presents 21 metrics which can be evaluated on code.

It is really surprising to notice how few of these metrics are really usable. Less
than one half of them are implemented in classical metrics tools (see Table II).
Moreover testability metrics have been rarely validated neither formally nor empir-
ically.

As a perspective for software testability, if we want to help practitioner to produce
easy-to-test software programs, we should be able to offer a validated, meaningful
and easy-to-understand set of metrics. From this survey, we are hardly convinced
that a set of metrics is necessary, because (1) existing metrics are too ambitious by
trying to obtain a large amount of information through a single number [Michura
and Capretz 2005] and (2) there are many different testing approaches and ways to
evaluate the testing cost.

ACM Transactions on Computational Logic, Vol. , No. , 20.



14 · Shaheen and du Bousquet

M
etrics

E
ff

o
rt

estim
a
tio

n
A

v
a
ila

b
le

to
o
ls

1
C

o
n
tro

l-fl
o
w

g
ra

p
h

m
etric

su
ite

[B
a
ch

e
a
n

d
M

u
llerb

u
rg

1
9
9
0
]

#
o
f

T
C

fo
r

co
n
tro

l-fl
o
w

g
ra

p
h

co
v
era

g
e

n
o

2
D

a
ta

-fl
o
w

g
ra

p
h

m
etric

su
ite

[Y
eh

a
n

d
L

in
1
9
9
8
]

#
o
f

T
C

fo
r

d
a
ta

-fl
o
w

g
ra

p
h

co
v
era

g
e

n
o

3
C

C
[M

cC
a
b

e
1
9
7
6
;

J
.

a
n

d
W

.
1
9
8
9
;

W
a
tso

n
a
n

d
M

cC
a
b

e
1
9
9
6
]

#
o
f

T
C

fo
r

b
ra

n
ch

co
v
era

g
e

(d
ecisio

n
p

o
in

t)
y
es

4
W

M
C

1
[C

h
id

a
m

b
er

a
n

d
K

em
erer

1
9
9
4
;

B
in

d
er

1
9
9
4
]

#
o
f

T
C

to
a
ch

iev
e

th
e

m
eth

o
d

co
v
era

g
e

y
es

5
N

O
M

[B
in

d
er

1
9
9
4
]

#
o
f

T
C

to
a
ch

iev
e

th
e

m
eth

o
d

co
v
era

g
e

y
es

6
W

M
C

C
C

[C
h

id
a
m

b
er

a
n

d
K

em
erer

1
9
9
4
;

B
in

d
er

1
9
9
4
]

#
o
f

T
C

to
a
ch

iev
e

th
e

b
ra

n
ch

co
v
era

g
e

a
t

th
e

cla
ss

lev
el

y
es

7
R

F
C

[C
h

id
a
m

b
er

a
n

d
K

em
erer

1
9
9
4
;

B
in

d
er

1
9
9
4
]

#
o
f

m
eth

o
d

s
to

b
e

stu
b

b
ed

y
es

8
C

B
O

[C
h

id
a
m

b
er

a
n

d
K

em
erer

1
9
9
4
;

B
in

d
er

1
9
9
4
]

#
o
f

cla
sses

to
b

e
stu

b
b

ed
(n

o
in

teg
ra

tio
n

stra
teg

y
)

y
es

9
F

O
U

T
[H

en
ry

a
n

d
K

a
fu

ra
1
9
8
1
]

#
o
f

m
eth

o
d

s
to

b
e

stu
b

b
ed

(n
o

in
teg

ra
tio

n
stra

teg
y
)

y
es

1
0

N
S

B
C

[J
u

n
g
m

a
y
r

2
0
0
2
]

#
o
f

cla
sses

to
b

e
stu

b
b

ed
(w

ith
a
n

in
teg

ra
tio

n
stra

teg
y
)

n
o

1
1

D
IT

[C
h

id
a
m

b
er

a
n

d
K

em
erer

1
9
9
4
;

B
in

d
er

1
9
9
4
]

p
ro

p
o
rtio

n
a
l

to
#

o
f

T
C

(w
h

en
in

h
erita

n
ce

is
re-tested

)
y
es

1
2

C
o
m

p
lex

ity
o
f

th
e

rep
ea

ted
in

h
erita

n
ce

[C
h
u

n
g

et
a
l.

1
9
9
7
]

#
o
f

rep
ea

ted
in

h
erita

n
ce

su
b

-tree
to

ex
a
m

in
e

n
o

T
able

I.
Scope

source-code
testability-related

m
etrics

ACM Transactions on Computational Logic, Vol. , No. , 20.



Source code metrics for OO system testability · 15

T
o
o
l

n
a
m

e
R

ef
er

en
ce

C
a
lc

u
la

te
d

m
et

ri
cs

1
C

K
J
M

h
tt

p
:/

/
w

w
w

.s
p

in
el

li
s.

g
r/

sw
/
ck

jm
/

W
M

C
,

D
IT

,
N

O
C

,
C

B
O

,
R

F
C

,
L

C
O

M
,.
..

2
N

et
B

ea
n

s
M

et
ri

cs
M

o
d

u
le

h
tt

p
:/

/
m

et
ri

cs
.n

et
b

ea
n

s.
o
rg

/
W

M
C

,
C

B
O

,
R

F
C

,
D

IT
,

N
O

C
,.
..

3
E

cl
ip

se
M

et
ri

cs
p

lu
g
-i

n
h
tt

p
:/

/
m

et
ri

cs
.s

o
u

rc
ef

o
rg

e.
n

et
/

L
C

O
M

,
W

M
C

,
C

C
,

D
IT

,.
..

4
J
S

ty
le

h
tt

p
:/

/
w

w
w

.m
m

si
n

d
ia

.c
o
m

/
js

ty
le

.h
tm

l
R

F
C

,
L

C
O

M
,

F
a
n

-I
n

,
F

a
n

-O
u

t,
W

M
C

,
D

IT

5
U

n
d

er
st

a
n

d
fo

r
J
a
v
a

h
tt

p
:/

/
w

w
w

.s
ci

to
o
ls

.c
o
m

L
C

O
M

,
D

IT
,

C
B

O
,

N
O

C
,

R
F

C
,.
..

T
ab

le
II

.
M

et
ri

cs
T

oo
ls

ACM Transactions on Computational Logic, Vol. , No. , 20.



16 · Shaheen and du Bousquet

REFERENCES

12 Mar 1993. IEEE standard for a software quality metrics methodology. IEEE Std 1061-1992 .

28 Sept. 1990. IEEE standard Glossary of Software Engineering Terminology.

Armstrong, J. and Mitchell, R. 1994. Uses and abuses of inheritance. Software Engineering
Journal 9, 1 (january), 19–26.

Bache, R. and Mullerburg, M. 1990. Measures of testability as a basis for quality assurance.

Software Engineering Journal 5, 2, 86–92.

Bainbridge, J. 1994. Defining testability metrics axiomatically. Softw. Test., Verif. Reliab. 4, 2,

63–80.

Basili, V. R., Briand, L. C., and Melo, W. L. 1996. A validation of object-oriented design
metrics as quality indicators. IEEE Trans. Software Eng. 22, 10, 751–761.

Bertolino, A. and Strigini, L. 1996. On the use of testability measures for dependability

assessment. IEEE Trans. Software Eng. 22, 2, 97–108.

Bieman, J. M. and Kang, B.-K. 1995. Cohesion and reuse in an object-oriented system. In SSR.

259–262.

Binder, R. V. 1994. Design for testability in object-oriented systems. Communications of the
ACM 37, 9 (Sept.), 87–101.

Binder, R. V. 1999. Testing Object-Oriented Systems: Models, Patterns, and Tools. The Addison-

Wesley Object Technology Series.
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Yu, P., Systä, T., and Müller, H. A. 2002. Predicting fault-proneness using oo metrics: An

industrial case study. In 6th European Conference on Software Maintenance and Reengineering
(CSMR 2002). IEEE Computer Society, Budapest, Hungary, 99–107.

Zhou, Y. and Leung, H. 2006. Empirical analysis of object-oriented design metrics for predicting
high and low severity faults. IEEE Trans. Software Eng. 32, 10, 771–789.

ACM Transactions on Computational Logic, Vol. , No. , 20.


	005
	05b
	05

